22,471 research outputs found
Confronting expansion distances of planetary nebulae with Gaia DR2 measurements
Individual distances to planetary nebulae are of the utmost relevance for our
understanding of post-asymptotic giant-branch evolution because they allow a
precise determination of stellar and nebular properties. Also, objects with
individual distances serve as calibrators for the so-called statistical
distances based on secondary nebular properties. With independently known
distances, it is possible to check empirically our understanding of the
formation and evolution of planetary nebulae as suggested by existing
hydrodynamical simulations. We compared the expansion parallaxes that have
recently been determined for a number of planetary nebulae with the
trigonometric parallaxes provided by the Gaia Data Release 2. Except for two
out of 11 nebulae, we found good agreement between the expansion and the Gaia
trigonometric parallaxes without any systematic trend with distance. Therefore,
the Gaia measurements also prove that the correction factors necessary to
convert proper motions of shocks into Doppler velocities cannot be ignored.
Rather, the size of these correction factors and their evolution with time as
predicted by 1-D hydrodynamical models of planetary nebulae is basically
validated. These correction factors are generally greater than unity and are
different for the outer shell and the inner bright rim of a planetary nebula.
The Gaia measurements also confirm earlier findings that spectroscopic methods
often lead to an overestimation of the distance. They also show that even
modelling of the entire system of star and nebula by means of sophisticated
photoionization modeling may not always provide reliable results.
The Gaia measurements confirm the basic correctness of the present
radiation-hydrodynamics models, which predict that both the shell and the rim
of a planetary nebula are two independently expanding entities.Comment: Accepted by Astronomy & Astrophysics; 8 pages, 3 figures, 1 tabl
ER-mitochondria contacts: Actin dynamics at the ER control mitochondrial fission via calcium release.
The formin-like protein INF2 is an important player in the polymerization of actin filaments. In this issue, Chakrabarti et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201709111) demonstrate that INF2 mediates actin polymerization at the endoplasmic reticulum (ER), resulting in increased ER-mitochondria contacts, calcium uptake by mitochondria, and mitochondrial division
Optimal decision making for sperm chemotaxis in the presence of noise
For navigation, microscopic agents such as biological cells rely on noisy
sensory input. In cells performing chemotaxis, such noise arises from the
stochastic binding of signaling molecules at low concentrations. Using
chemotaxis of sperm cells as application example, we address the classic
problem of chemotaxis towards a single target. We reveal a fundamental
relationship between the speed of chemotactic steering and the strength of
directional fluctuations that result from the amplification of noise in the
chemical input signal. This relation implies a trade-off between slow, but
reliable, and fast, but less reliable, steering.
By formulating the problem of optimal navigation in the presence of noise as
a Markov decision process, we show that dynamic switching between reliable and
fast steering substantially increases the probability to find a target, such as
the egg. Intriguingly, this decision making would provide no benefit in the
absence of noise. Instead, decision making is most beneficial, if chemical
signals are above detection threshold, yet signal-to-noise ratios of gradient
measurements are low. This situation generically arises at intermediate
distances from a target, where signaling molecules emitted by the target are
diluted, thus defining a `noise zone' that cells have to cross.
Our work addresses the intermediate case between well-studied perfect
chemotaxis at high signal-to-noise ratios close to a target, and random search
strategies in the absence of navigation cues, e.g. far away from a target. Our
specific results provide a rational for the surprising observation of decision
making in recent experiments on sea urchin sperm chemotaxis. The general theory
demonstrates how decision making enables chemotactic agents to cope with high
levels of noise in gradient measurements by dynamically adjusting the
persistence length of a biased persistent random walk.Comment: 9 pages, 5 figure
Effects of Photospheric Temperature Inhomogeneities on Lithium Abundance Determinations (2D)
Based on detailed 2D radiation hydrodynamics (RHD) simulations, we have
investigated the effects of photospheric temperature inhomogeneities induced by
convection on spectroscopic determinations of the lithium abundance.
Computations have been performed both for the solar case and for a metal-poor
dwarf. NLTE effects are taken into account, using a five-level atomic model for
LiI. Comparisons are presented with traditional 1D models having the same
effective temperature and gravity. The net result is that, while LTE results
differ dramatically between 1D and 2D models, especially in the metal-poor
case, this does not remain true when NLTE effects are included: 1D/2D
differences in the inferred NLTE Li abundance are always well below 0.1 dex.
The present computations still assume LTE in the continuum. New computations
removing this assumption are planned for the near future.Comment: To appear in "The Light Elements and their Evolution", eds. L. da
Silva, M. Spite & J.R. de Medeiros, IAU Symopsium 198, ASP Conference Series
(in press
PEPSI deep spectra. I. The Sun-as-a-star
As part of the first Potsdam Echelle Polarimetric and Spectroscopic
Instrument (PEPSI) key-science project, we aim to provide well-exposed (viz.
deep) high-resolution spectra of representative stellar targets. These spectra
will be made available in form of (electronic) atlases. The first star in this
series of papers is our Sun. It also acts as a system-performance cornerstone.
The deep spectra in this paper are the results of combining up to 100
consecutive exposures per wavelength setting and are compared with other solar
flux atlases. Our software for the optimal data extraction and reduction of
PEPSI spectra is described and verified with the solar data. Three deep solar
flux spectra with a spectral resolution of up to 270,000, a continuous
wavelength coverage from 383 nm to 914 nm, and a photon signal to noise ratio
(S/N) of between 2,000-8,000:1 depending on wavelength are presented.
Additionally, a time-series of 996 high-cadence spectra in one cross disperser
is used to search for intrinsic solar modulations. The wavelength calibration
based on Th-Ar exposures and simultaneous Fabry-Perot combs enables an absolute
wavelength solution within 10 m/s (rms) with respect to the HARPS laser-comb
solar atlas and a relative rms of 1.2 m/s for one day. For science
demonstration, we redetermined the disk-average solar Li abundance to
1.09+/-0.04 dex on the basis of 3D NLTE model atmospheres. We detected
disk-averaged p-mode RV oscillations with a full amplitude of 47 cm/s at 5.5
min. Comparisons with two solar FTS atlases, as well as with the HARPS solar
atlas, validate the PEPSI data product. Now, PEPSI/SDI solar-flux spectra are
being taken with a sampling of one deep spectrum per day, and are supposed to
continue a full magnetic cycle of the Sun.Comment: in press, 13 pages, 8 figures, data available from pepsi.aip.d
3D Simulation of Convection and Spectral Line Formation in A-type Stars
We present first realistic numerical simulations of 3D radiative convection
in the surface layers of main sequence A-type stars with Teff = 8000 K and 8500
K, log g = 4.4 and 4.0, recently performed with the CO5BOLD radiation
hydrodynamics code. The resulting models are used to investigate the structure
of the H+HeI and the HeII convection zones in comparison with the predictions
of local and non-local convection theories, and to determine the amount of
"overshoot" into the stable layers below the HeII convection zone. The
simulations also predict how the topology of the photospheric granulation
pattern changes from solar to A-type star convection. The influence of the
photospheric temperature fluctuations and velocity fields on the shape of
spectral lines is demonstrated by computing synthetic line profiles and line
bisectors for some representative examples, allowing us to confront the 3D
model results with observations.Comment: 5 pages, 6 figures (17 figure files), 1 Tabl
Evaluating local correlation tracking using CO5BOLD simulations of solar granulation
Flows on the solar surface are linked to solar activity, and LCT is one of
the standard techniques for capturing the dynamics of these processes by
cross-correlating solar images. However, the link between contrast variations
in successive images to the underlying plasma motions has to be quantitatively
confirmed. Radiation hydrodynamics simulations of solar granulation
(e.g.,CO5BOLD) provide access to both the wavelength-integrated, emergent
continuum intensity and the 3D velocity field at various heights in the solar
atmosphere. Thus, applying LCT to continuum images yields horizontal proper
motions, which are then compared to the velocity field of the simulated
(non-magnetic) granulation. In this study, we evaluate the performance of an
LCT algorithm previously developed for bulk-processing Hinode G-band images,
establish it as a quantitative tool for measuring horizontal proper motions,
and clearly work out the limitations of LCT or similar techniques designed to
track optical flows. Horizontal flow maps and frequency distributions of the
flow speed were computed for a variety of LCT input parameters including the
spatial resolution, the width of the sampling window, the time cadence of
successive images, and the averaging time used to determine persistent flow
properties. Smoothed velocity fields from the hydrodynamics simulation at three
atmospheric layers (log tau=-1,0,and +1) served as a point of reference for the
LCT results. LCT recovers many of the granulation properties, e.g.,the shape of
the flow speed distributions, the relationship between mean flow speed and
averaging time, and also--with significant smoothing of the simulated velocity
field--morphological features of the flow and divergence maps. However, the
horizontal proper motions are grossly underestimated by as much as a factor of
three. The LCT flows match best the flows deeper in the atmosphere at log
tau=+1.Comment: 11 pages, 16 figures, accepted for publication in Astronomy and
Astrophysic
- …
