7,750 research outputs found

    Constraining chameleon field theories using the GammeV afterglow experiments

    Get PDF
    The GammeV experiment has constrained the couplings of chameleon scalar fields to matter and photons. Here we present a detailed calculation of the chameleon afterglow rate underlying these constraints. The dependence of GammeV constraints on various assumptions in the calculation is studied. We discuss GammeV--CHASE, a second-generation GammeV experiment, which will improve upon GammeV in several major ways. Using our calculation of the chameleon afterglow rate, we forecast model-independent constraints achievable by GammeV--CHASE. We then apply these constraints to a variety of chameleon models, including quartic chameleons and chameleon dark energy models. The new experiment will be able to probe a large region of parameter space that is beyond the reach of current tests, such as fifth force searches, constraints on the dimming of distant astrophysical objects, and bounds on the variation of the fine structure constant.Comment: 17 pages, 12 figures, 2 table

    Using Transit Timing Observations to Search for Trojans of Transiting Extrasolar Planets

    Full text link
    Theoretical studies predict that Trojans are likely a frequent byproduct of planet formation and evolution. We examine the sensitivity of transit timing observations for detecting Trojan companions to transiting extrasolar planets. We demonstrate that this method offers the potential to detect terrestrial-mass Trojans using existing ground-based observatories. We compare the transit timing variation (TTV) method with other techniques for detecting extrasolar Trojans and outline the future prospects for this method.Comment: submitted to ApJL, 12 pages, 2 figure

    An in-depth spectroscopic examination of molecular bands from 3D hydrodynamical model atmospheres I. Formation of the G-band in metal-poor dwarf stars

    Full text link
    Recent developments in the three-dimensional (3D) spectral synthesis code Linfor3D have meant that, for the first time, large spectral wavelength regions, such as molecular bands, can be synthesised with it in a short amount of time. A detailed spectral analysis of the synthetic G-band for several dwarf turn-off-type 3D atmospheres (5850 <= T_eff [K] <= 6550, 4.0 <= log g <= 4.5, -3.0 <= [Fe/H] <= -1.0) was conducted, under the assumption of local thermodynamic equilibrium. We also examine carbon and oxygen molecule formation at various metallicity regimes and discuss the impact it has on the G-band. Using a qualitative approach, we describe the different behaviours between the 3D atmospheres and the traditional one-dimensional (1D) atmospheres and how the different physics involved inevitably leads to abundance corrections, which differ over varying metallicities. Spectra computed in 1D were fit to every 3D spectrum to determine the 3D abundance correction. Early analysis revealed that the CH molecules that make up the G-band exhibited an oxygen abundance dependency; a higher oxygen abundance leads to weaker CH features. Nitrogen abundances showed zero impact to CH formation. The 3D corrections are also stronger at lower metallicity. Analysis of the 3D corrections to the G-band allows us to assign estimations of the 3D abundance correction to most dwarf stars presented in the literature. The 3D corrections suggest that A(C) in CEMP stars with high A(C) would remain unchanged, but would decrease in CEMP stars with lower A(C). It was found that the C/O ratio is an important parameter to the G-band in 3D. Additional testing confirmed that the C/O ratio is an equally important parameter for OH transitions under 3D. This presents a clear interrelation between the carbon and oxygen abundances in 3D atmospheres through their molecular species, which is not seen in 1D.Comment: 19 pages, 13 figures, 4 tables. Accepted for publication in A&

    3D Model Atmospheres for Extremely Low-Mass White Dwarfs

    Get PDF
    We present an extended grid of mean three-dimensional (3D) spectra for low-mass, pure-hydrogen atmosphere DA white dwarfs (WDs). We use CO5BOLD radiation-hydrodynamics 3D simulations covering Teff = 6000-11,500 K and logg = 5-6.5 (cgs units) to derive analytical functions to convert spectroscopically determined 1D temperatures and surface gravities to 3D atmospheric parameters. Along with the previously published 3D models, the 1D to 3D corrections are now available for essentially all known convective DA WDs (i.e., logg = 5-9). For low-mass WDs, the correction in temperature is relatively small (a few per cent at the most), but the surface gravities measured from the 3D models are lower by as much as 0.35 dex. We revisit the spectroscopic analysis of the extremely low-mass (ELM) WDs, and demonstrate that the 3D models largely resolve the discrepancies seen in the radius and mass measurements for relatively cool ELM WDs in eclipsing double WD and WD + milli-second pulsar binary systems. We also use the 3D corrections to revise the boundaries of the ZZ Ceti instability strip, including the recently found ELM pulsators.Comment: 11 pages, 8 figures, accepted for publication in the Astrophysical Journa
    • …
    corecore