3 research outputs found

    Additional file 2: Figure S1. of Iroquois homeobox 2 suppresses cellular motility and chemokine expression in breast cancer cells

    No full text
    Gene reporter assay with reporter plasmid containing proximal CCL5 promoter fragment. The reporter plasmid was transfected into BT-549 cells that over express IRX2 and into the control cell line.  For normalization, a co-transfection with the pGL4.74 plasmid containing the Renilla luciferase was performed. Each experiment was performed in triplicate. Error bars represent the standard deviation of the mean. (PDF 18 kb

    A Golden Gate Modular Cloning Toolbox for Plants

    No full text
    Plant Synthetic Biology requires robust and efficient methods for assembling multigene constructs. Golden Gate cloning provides a precision module-based cloning technique for facile assembly of multiple genes in one construct. We present here a versatile resource for plant biologists comprising a set of cloning vectors and 96 standardized parts to enable Golden Gate construction of multigene constructs for plant transformation. Parts include promoters, untranslated sequences, reporters, antigenic tags, localization signals, selectable markers, and terminators. The comparative performance of parts in the model plant <i>Nicotiana benthamiana</i> is discussed

    Temperature-Dependent In-Plane Structure Formation of an X‑Shaped Bolapolyphile within Lipid Bilayers

    No full text
    Polyphilic compound B12 is an X-shaped molecule with a stiff aromatic core, flexible aliphatic side chains, and hydrophilic end groups. Forming a thermotropic triangular honeycomb phase in the bulk between 177 and 182 °C but no lyotropic phases, it is designed to fit into DPPC or DMPC lipid bilayers, in which it phase separates at room temperature, as observed in giant unilamellar vesicles (GUVs) by fluorescence microscopy. TEM investigations of bilayer aggregates support the incorporation of B12 into intact membranes. The temperature-dependent behavior of the mixed samples was followed by differential scanning calorimetry (DSC), FT-IR spectroscopy, fluorescence spectroscopy, and X-ray scattering. DSC results support in-membrane phase separation, where a reduced main transition and new B12-related transitions indicate the incorporation of lipids into the B12-rich phase. The phase separation was confirmed by X-ray scattering, where two different lamellar repeat distances are visible over a wide temperature range. Polarized ATR-FTIR and fluorescence anisotropy experiments support the transmembrane orientation of B12, and FT-IR spectra further prove a stepwise “melting” of the lipid chains. The data suggest that in the B12-rich domains the DPPC chains are still rigid and the B12 molecules interact with each other via π–π interactions. All results obtained at temperatures above 75 °C confirm the formation of a single, homogeneously mixed phase with freely mobile B12 molecules
    corecore