31 research outputs found
A two-channel Kondo impurity in the spin-1/2 chain: Consequences for Knight shift experiments
A magnetic impurity in the spin-1/2 chain is a simple realization of the
two-channel Kondo problem since the field theoretical descriptions in the
spin-sector are identical. The correlation functions near the impurity can be
calculated. Using a modified version of the numerical transfer matrix DMRG, we
are able to accurately determine local properties close to the impurity in the
thermodynamic limit. The local susceptibilities (Knight-shifts) show an
interesting behavior in a large range around the impurities. We are able to
make quantitative experimental predictions which would allow to observe
two-channel Kondo physics for the first time directly by doping of spin-1/2
chain compounds.Comment: 2 pages in revtex format including 2 embedded figures (using epsf
Management of Autoimmune Encephalitis: An Observational Monocentric Study of 38 Patients
Over the last years the clinical picture of autoimmune encephalitis has gained importance in neurology. The broad field of symptoms and syndromes poses a great challenge in diagnosis for clinicians. Early diagnosis and the initiation of the appropriate treatment is the most relevant step in the management of the patients. Over the last years advances in neuroimmunology have elucidated pathophysiological basis and improved treatment concepts. In this monocentric study we compare demographics, diagnostics, treatment options and outcomes with knowledge from literature. We present 38 patients suffering from autoimmune encephalitis. Antibodies were detected against NMDAR and LGI1 in seven patients, against GAD in 6 patients) one patient had coexisting antibodies against GABAA and GABAB), against CASPR2, IGLON5, YO, Glycine in 3 patients, against Ma-2 in 2 patients, against CV2 and AMPAR in 1 patient; two patients were diagnosed with hashimoto encephalitis with antibodies against TPO/TG. First, we compare baseline data of patients who were consecutively diagnosed with autoimmune encephalitis from a retrospective view. Further, we discuss when to stop immunosuppressive therapy since how long treatment should be performed after clinical stabilization or an acute relapse is still a matter of debate. Our experiences are comparable with data from literature. However, in contrary to other experts in the field we stop treatment and monitor patients very closely after tumor removal and after rehabilitation from first attack
Phase diagram of an impurity in the spin-1/2 chain: two channel Kondo effect versus Curie law
We consider a magnetic s=1/2 impurity in the antiferromagnetic spin chain as
a function of two coupling parameters: the symmetric coupling of the impurity
to two sites in the chain and the coupling between the two sites .
By using field theory arguments and numerical calculations we can identify all
possible fixed points and classify the renormalization flow between them, which
leads to a non-trivial phase diagram. Depending on the detailed choice of the
two (frustrating) coupling strengths, the stable phases correspond either to a
decoupled spin with Curie law behavior or to a non-Fermi liquid fixed point
with a logarithmically diverging impurity susceptibility as in the two channel
Kondo effect. Our results resolve a controversy about the renormalization flow.Comment: 5 pages in revtex format including 4 embedded figures (using epsf).
The latest version in PDF format is available from
http://fy.chalmers.se/~eggert/papers/phase-diagram.pd
Thermodynamic limit of the density matrix renormalization for the spin-1 Heisenberg chain
The density matrix renormalization group (``DMRG'') discovered by White has
shown to be a powerful method to understand the properties of many one
dimensional quantum systems. In the case where renormalization eventually
converges to a fixed point we show that quantum states in the thermodynamic
limit with periodic boundary conditions can be simply represented by a special
type of product ground state with a natural description of Bloch states of
elementary excitations that are spin-1 solitons. We then observe that these
states can be rederived through a simple variational ansatz making no reference
to a renormalization construction. The method is tested on the spin-1
Heisenberg model.Comment: 13 pages uuencoded compressed postscript including figure
Interferon beta-1a sc at 25 years: a mainstay in the treatment of multiple sclerosis over the period of one generation.
INTRODUCTION
Interferon beta (IFN beta) preparations are an established group of drugs used for immunomodulation in patients with multiple sclerosis (MS). Subcutaneously (sc) applied interferon beta-1a (IFN beta-1a sc) has been in continuous clinical use for 25 years as a disease-modifying treatment.
AREAS COVERED
Based on data published since 2018, we discuss recent insights from analyses of the pivotal trial PRISMS and its long-term extension as well as from newer randomized studies with IFN beta-1a sc as the reference treatment, the use of IFN beta-1a sc across the patient life span and as a bridging therapy, recent data regarding the mechanisms of action, and potential benefits of IFN beta-1a sc regarding vaccine responses.
EXPERT OPINION
IFN beta-1a sc paved the way to effective immunomodulatory treatment of MS, enabled meaningful insights into the disease process, and remains a valid therapeutic option in selected vulnerable MS patient groups
Impurity corrections to the thermodynamics in spin chains using a transfer-matrix DMRG method
We use the density matrix renormalization group (DMRG) for transfer matrices
to numerically calculate impurity corrections to thermodynamic properties. The
method is applied to two impurity models in the spin-1/2 chain, namely a weak
link in the chain and an external impurity spin. The numerical analysis
confirms the field theory calculations and gives new results for the crossover
behavior.Comment: 9 pages in revtex format including 5 embedded figures (using epsf).
To appear in PRB. The latest version in PDF format can be found at
http://fy.chalmers.se/~eggert/papers/DMRGimp.pd
Universal cross-over behavior of a magnetic impurity and consequences for doping in spin-1/2 chains
We consider a magnetic impurity in the antiferromagnetic spin-1/2 chain which
is equivalent to the two-channel Kondo problem in terms of the field
theoretical description. Using a modification of the transfer-matrix density
matrix renormalization group (DMRG) we are able to determine local and global
properties in the thermodynamic limit. The cross-over function for the impurity
susceptibility is calculated over a large temperature range, which exhibits
universal data-collapse. We are also able to determine the local
susceptibilities near the impurity, which show an interesting competition of
boundary effects. This results in quantitative predictions for experiments on
doped spin-1/2 chains, which could observe two-channel Kondo physics directly.Comment: 5 pages in revtex format including 3 embedded figures (using epsf).
The latest version in PDF format is available from
http://fy.chalmers.se/~eggert/papers/crossover.pdf . Accepted by PR
Spin- and charge-density oscillations in spin chains and quantum wires
We analyze the spin- and charge-density oscillations near impurities in spin
chains and quantum wires. These so-called Friedel oscillations give detailed
information about the impurity and also about the interactions in the system.
The temperature dependence of these oscillations explicitly shows the
renormalization of backscattering and conductivity, which we analyze for a
number of different impurity models. We are also able to analyze screening
effects in one dimension. The relation to the Kondo effect and experimental
consequences are discussed.Comment: Final published version. 15 pages in revtex format including 22
epsf-embedded figures. The latest version in PDF format is available from
http://fy.chalmers.se/~eggert/papers/density-osc.pd
Phase separation in t-J ladders
The phase separation boundary of isotropic t-J ladders is analyzed using
density matrix renormalization group techniques. The complete boundary to phase
separation as a function of J/t and doping is determined for a chain and for
ladders with two, three and four legs. Six-chain ladders have been analyzed at
low hole doping. We use a direct approach in which the phase separation
boundary is determined by measuring the hole density in the part of the system
which contains both electrons and holes. In addition we examine the binding
energy of multi-hole clusters. An extrapolation in the number of legs suggests
that the lowest J/t for phase separation to occur in the two dimensional t-J
model is J/t~1.Comment: 8 pages in revtex format including 13 embedded figures, one reference
adde