2 research outputs found
The Rapid and Facile Synthesis of Oxyamine Linkers for the Preparation of Hydrolytically Stable Glycoconjugates
The synthesis of
a number of <i>N</i>-glycosyl-<i>N</i>-alkyl-methoxyamine
bifunctional linkers is described.
The linkers contain an <i>N</i>-methoxyamine functional
group for conjugation to carbohydrates and a terminal group, such
as an amine, azide, thiol, or carboxylic acid, for conjugation to
the probe of choice. The strategy for the linker synthesis is rapid
(3–4 steps) and efficient (51–96% overall yield), and
many of the linkers can be synthesized using a three-step one-pot
strategy. Moreover, the linkers can be conjugated to glycans in excellent
yield and they show excellent stability toward hydrolytic cleavage
Improved Total Synthesis of Tubulysins and Design, Synthesis, and Biological Evaluation of New Tubulysins with Highly Potent Cytotoxicities against Cancer Cells as Potential Payloads for Antibody–Drug Conjugates
Improved,
streamlined total syntheses of natural tubulysins such
as V (<b>Tb45</b>) and U (<b>Tb46</b>) and pretubulysin
D (<b>PTb-D43</b>), and their application to the synthesis of
designed tubulysin analogues (<b>Tb44</b>, <b>PTb-D42</b>, <b>PTb-D47</b>–<b>PTb-D49</b>, and <b>Tb50</b>–<b>Tb120</b>), are described. Cytotoxicity evaluation
of the synthesized compounds against certain cancer cell lines revealed
a number of novel analogues with exceptional potencies [e.g., <b>Tb111</b>: IC<sub>50</sub> = 40 pM against MES SA (uterine sarcoma)
cell line; IC<sub>50</sub> = 6 pM against HEK 293T (human embryonic
kidney cancer) cell line; and IC<sub>50</sub> = 1.54 nM against MES
SA DX (MES SA with marked multidrug resistance) cell line]. These
studies led to a set of valuable structure–activity relationships
that provide guidance to further molecular design, synthesis, and
biological evaluation studies. The extremely potent cytotoxic compounds
discovered in these investigations are highly desirable as potential
payloads for antibody–drug conjugates and other drug delivery
systems for personalized targeted cancer chemotherapies