287 research outputs found

    Linear Extension Diameter of Downset Lattices of 2-Dimensional Posets

    Full text link
    The linear extension diameter of a finite poset P is the maximum distance between a pair of linear extensions of P, where the distance between two linear extensions is the number of pairs of elements of P appearing in different orders in the two linear extensions. We prove a formula for the linear extension diameter of the Boolean Lattice and characterize the diametral pairs of linear extensions. For the more general case of a downset lattice D_P of a 2-dimensional poset P, we characterize the diametral pairs of linear extensions of D_P and show how to compute the linear extension diameter of D_P in time polynomial in |P|.Comment: 25 pages, 7 figure

    Empty Rectangles and Graph Dimension

    Full text link
    We consider rectangle graphs whose edges are defined by pairs of points in diagonally opposite corners of empty axis-aligned rectangles. The maximum number of edges of such a graph on nn points is shown to be 1/4 n^2 +n -2. This number also has other interpretations: * It is the maximum number of edges of a graph of dimension \bbetween{3}{4}, i.e., of a graph with a realizer of the form \pi_1,\pi_2,\ol{\pi_1},\ol{\pi_2}. * It is the number of 1-faces in a special Scarf complex. The last of these interpretations allows to deduce the maximum number of empty axis-aligned rectangles spanned by 4-element subsets of a set of nn points. Moreover, it follows that the extremal point sets for the two problems coincide. We investigate the maximum number of of edges of a graph of dimension 34\between{3}{4}, i.e., of a graph with a realizer of the form \pi_1,\pi_2,\pi_3,\ol{\pi_3}. This maximum is shown to be 1/4n2+O(n)1/4 n^2 + O(n). Box graphs are defined as the 3-dimensional analog of rectangle graphs. The maximum number of edges of such a graph on nn points is shown to be 7/16n2+o(n2)7/16 n^2 + o(n^2)

    Mixing Times of Markov Chains on Degree Constrained Orientations of Planar Graphs

    Full text link
    We study Markov chains for α\alpha-orientations of plane graphs, these are orientations where the outdegree of each vertex is prescribed by the value of a given function α\alpha. The set of α\alpha-orientations of a plane graph has a natural distributive lattice structure. The moves of the up-down Markov chain on this distributive lattice corresponds to reversals of directed facial cycles in the α\alpha-orientation. We have a positive and several negative results regarding the mixing time of such Markov chains. A 2-orientation of a plane quadrangulation is an orientation where every inner vertex has outdegree 2. We show that there is a class of plane quadrangulations such that the up-down Markov chain on the 2-orientations of these quadrangulations is slowly mixing. On the other hand the chain is rapidly mixing on 2-orientations of quadrangulations with maximum degree at most 4. Regarding examples for slow mixing we also revisit the case of 3-orientations of triangulations which has been studied before by Miracle et al.. Our examples for slow mixing are simpler and have a smaller maximum degree, Finally we present the first example of a function α\alpha and a class of plane triangulations of constant maximum degree such that the up-down Markov chain on the α\alpha-orientations of these graphs is slowly mixing

    Distributive Lattices, Polyhedra, and Generalized Flow

    Full text link
    A D-polyhedron is a polyhedron PP such that if x,yx,y are in PP then so are their componentwise max and min. In other words, the point set of a D-polyhedron forms a distributive lattice with the dominance order. We provide a full characterization of the bounding hyperplanes of D-polyhedra. Aside from being a nice combination of geometric and order theoretic concepts, D-polyhedra are a unifying generalization of several distributive lattices which arise from graphs. In fact every D-polyhedron corresponds to a directed graph with arc-parameters, such that every point in the polyhedron corresponds to a vertex potential on the graph. Alternatively, an edge-based description of the point set can be given. The objects in this model are dual to generalized flows, i.e., dual to flows with gains and losses. These models can be specialized to yield some cases of distributive lattices that have been studied previously. Particular specializations are: lattices of flows of planar digraphs (Khuller, Naor and Klein), of α\alpha-orientations of planar graphs (Felsner), of c-orientations (Propp) and of Δ\Delta-bonds of digraphs (Felsner and Knauer). As an additional application we exhibit a distributive lattice structure on generalized flow of breakeven planar digraphs.Comment: 17 pages, 3 figure
    corecore