819 research outputs found
Hier ist wahrhaftig ein Loch im Himmel: The NGC1999 dark globule is not a globule
The NGC1999 reflection nebula features a dark patch with a size of ~10 000 AU, which has been interpreted as a small, dense foreground globule and possible site of imminent star formation. We present Herschel PACS far-infrared 70 and 160 μmmaps, which reveal a flux deficit at the location of the globule. We estimate the globule mass needed to produce such an absorption feature to be a few tenths to a few M_⊙. Inspired by this Herschel observation, we obtained APEX LABOCA and SABOCA submillimeter continuum maps, and Magellan PANIC near-infrared images of the region. We do not detect a submillimer source at the location of the Herschel flux decrement; furthermore our observations place an upper limit on the mass of the globule of ~2.4×10^(−2) M_⊙. Indeed, the submillimeter maps appear to show a flux depression as well. Furthermore, the near–infrared images detect faint background stars that are less affected by extinction inside the dark patch than in its surroundings. We suggest that the dark patch is in fact a hole or
cavity in the material producing the NGC1999 reflection nebula, excavated by protostellar jets from the V380 Ori multiple system
Molecular CO outflows in the L1641-N cluster: kneading a cloud core
We present results of 1.3mm interferometric and single-dish observations of
the center of the L1641-N cluster in Orion. Single-dish wide-field continuum
and CO(2-1) observations reveal the presence of several molecular outflows
driven by deeply embedded protostellar sources. At higher angular resolution,
the dominant millimeter source in the cluster center is resolved into a pair of
protostars (L1641-N-MM1 and MM3), each driving a collimated outflow, and a more
extended, clumpy core. Low-velocity CO line-wing emission is widely spread over
much of the cluster area. We detect and map the distribution of several other
molecular transitions (13CO, C18O, 13CS, SO, CH3OH, CH3CN, and OCS). CH3CN and
OCS may indicate the presence of a hot corino around L1641-N-MM1. We
tentatively identify a velocity gradient over L1641-N-MM1 in CH3CN and OCS,
oriented roughly perpendicular to the outflow direction, perhaps indicative of
a circumstellar disk. An analysis of the energy and momentum load of the CO
outflows, along with the notion that apparently a large volume fraction is
affected by the multiple outflow activity, suggests that outflows from a
population of low-mass stars might have a significant impact on clustered (and
potentially high-mass) star formation.Comment: 16 pages plus 10 figures accepted by AJ, full resolution version
available at http://www.eso.org/~tstanke/preprints.htm
Massive envelopes and filaments in the NGC 3603 star forming region
The formation of massive stars and their arrival on the zero-age
main-sequence occurs hidden behind dense clouds of gas and dust. In the giant
Hii region NGC 3603, the radiation of a young cluster of OB stars has dispersed
dust and gas in its vicinity. At a projected distance of 2:5 pc from the
cluster, a bright mid-infrared (mid-IR) source (IRS 9A) had been identified as
a massive young stellar object (MYSO), located on the side of a molecular clump
(MM2) of gas facing the cluster. We investigated the physical conditions in
MM2, based on APEX sub-mm observations using the SABOCA and SHFI instruments,
and archival ATCA 3 mm continuum and CS spectral line data. We resolved MM2
into several compact cores, one of them closely associated with IRS 9A. These
are likely infrared dark clouds as they do not show the typical hot-core
emission lines and are mostly opaque against the mid-IR background. The compact
cores have masses of up to several hundred times the solar mass and gas
temperatures of about 50 K, without evidence of internal ionizing sources. We
speculate that IRS 9A is younger than the cluster stars, but is in an
evolutionary state after that of the compact cores
Highly Collimated Jets and Wide-Angle Outflows in HH46/47: New Evidence from Spitzer IR Images
We present new details of the structure and morphology of the jets and
outflows in HH46/47 as seen in Spitzer infrared images from IRAC and MIPS,
reprocessed using the ``HiRes'' deconvolution technique. HiRes improves the
visualization of spatial morphology by enhancing resolution (to sub-arcsec
levels in IRAC bands) and removing the contaminating side lobes from bright
sources. In addition to sharper views of previously reported bow shocks, we
have detected: (i) the sharply-delineated cavity walls of the wide-angle
biconical outflow, seen in scattered light on both sides of the protostar, (ii)
several very narrow jet features at distances 400 AU to 0.1 pc from the star,
and, (iii) compact emissions at MIPS 24 micron coincident with the jet heads,
tracing the hottest atomic/ionic gas in the bow shocks.Comment: 11 pages, 4 Figures, Accepted for publication in ApJ(Letters
Unveiling the near-infrared structure of the massive-young stellar object NGC 3603 IRS 9A with sparse aperture masking and spectroastrometry
Contemporary theory holds that massive stars gather mass during their initial
phases via accreting disk-like structures. However, conclusive evidence for
disks has remained elusive for the most massive young objects. This is mainly
due to significant observational challenges. Incisive studies, even targeting
individual objects, are therefore relevant to the progression of the field. NGC
3603 IRS 9A* is a young massive stellar object still surrounded by an envelope
of molecular gas. Previous mid-infrared observations with long-baseline
interferometry provided evidence for a disk of 50 mas diameter at its core.
This work aims at a comprehensive study of the physics and morphology of IRS 9A
at near-infrared wavelengths. New sparse aperture masking interferometry data
taken with NACO/VLT at Ks and Lp filters were obtained and analysed together
with archival CRIRES spectra of the H2 and BrG lines. The calibrated
visibilities recorded at Ks and Lp bands suggest the presence of a partially
resolved compact object of 30 mas at the core of IRS 9A, together with the
presence of over-resolved flux. The spectroastrometric signal of the H2 line
shows that this spectral feature proceeds from the large scale extended
emission (300 mas) of IRS 9A, while the BrG line appears to be formed at the
core of the object (20 mas). This scenario is consistent with the brightness
distribution of the source for near- and mid-infrared wavelengths at various
spatial scales. However, our model suffers from remaining inconsistencies
between SED modelling and the interferometric data. Moreover, the BrG
spectroastrometric signal indicates that the core of IRS 9A exhibits some form
of complexity such as asymmetries in the disk. Future high-resolution
observations are required to confirm the disk/envelope model and to flesh out
the details of the physical form of the inner regions of IRS 9A.Comment: Accepted to be published in Astronomy & Astrophysics, 13 pages, 14
figure
The VISTA Orion mini-survey: star formation in the Lynds 1630 North cloud
The Orion cloud complex presents a variety of star formation mechanisms and
properties and it is still one of the most intriguing targets for star
formation studies. We present VISTA/VIRCAM near-infrared observations of the
L1630N star forming region, including the stellar clusters NGC 2068 and NGC
2071, in the Orion molecular cloud B and discuss them in combination with
Spitzer data. We select 186 young stellar object (YSO) candidates in the region
on the basis of multi-colour criteria, confirm the YSO nature of the majority
of them using published spectroscopy from the literature, and use this sample
to investigate the overall star formation properties in L1630N. The K-band
luminosity function of L1630N is remarkably similar to that of the Trapezium
cluster, i.e., it presents a broad peak in the range 0.3-0.7 M and a
fraction of sub-stellar objects of 20%. The fraction of YSOs still
surrounded by disk/envelopes is very high (85%) compared to other star
forming regions of similar age (1-2 Myr), but includes some uncertain
corrections for diskless YSOs. Yet, a possibly high disk fraction together with
the fact that 1/3 of the cloud mass has a gas surface density above the
threshold for star formation (129 M pc), points towards a
still on-going star formation activity in L1630N. The star formation efficiency
(SFE), star formation rate (SFR) and density of star formation of L1630N are
within the ranges estimated for galactic star forming regions by the Spitzer
"core to disk" and "Gould's Belt" surveys. However, the SFE and SFR are lower
than the average value measured in the Orion A cloud and, in particular, lower
than that in the southern regions of L1630. This might suggest different star
formation mechanisms within the L1630 cloud complex.Comment: 22 pages, 9 figure
Herschel/PACS Imaging of Protostars in the HH 1-2 Outflow Complex
We present 70 and 160 micron Herschel science demonstration images of a field
in the Orion A molecular cloud that contains the prototypical Herbig-Haro
objects HH 1 and 2, obtained with the Photodetector Array Camera and
Spectrometer (PACS). These observations demonstrate Herschel's unprecedented
ability to study the rich population of protostars in the Orion molecular
clouds at the wavelengths where they emit most of their luminosity. The four
protostars previously identified by Spitzer 3.6-40 micron imaging and
spectroscopy are detected in the 70 micron band, and three are clearly detected
at 160 microns. We measure photometry of the protostars in the PACS bands and
assemble their spectral energy distributions (SEDs) from 1 to 870 microns with
these data, Spitzer spectra and photometry, 2MASS data, and APEX sub-mm data.
The SEDs are fit to models generated with radiative transfer codes. From these
fits we can constrain the fundamental properties of the protostars. We find
luminosities in the range 12-84 L_sun and envelope densities spanning over two
orders of magnitude. This implies that the four protostars have a wide range of
envelope infall rates and evolutionary states: two have dense, infalling
envelopes, while the other two have only residual envelopes. We also show the
highly irregular and filamentary structure of the cold dust and gas surrounding
the protostars as traced at 160 microns.Comment: 6 pages, 4 figures, accepted for publication in the A&A Herschel
special issu
- …