56 research outputs found

    Seeing spin dynamics in atomic gases

    Full text link
    The dynamics of internal spin, electronic orbital, and nuclear motion states of atoms and molecules have preoccupied the atomic and molecular physics community for decades. Increasingly, such dynamics are being examined within many-body systems composed of atomic and molecular gases. Our findings sometimes bear close relation to phenomena observed in condensed-matter systems, while on other occasions they represent truly new areas of investigation. I discuss several examples of spin dynamics that occur within spinor Bose-Einstein gases, highlighting the advantages of spin-sensitive imaging for understanding and utilizing such dynamics.Comment: Chapter in upcoming Review Volume entitled "From Atomic to Mesoscale: The Role of Quantum Coherence in Systems of Various Complexities" from World Scientifi

    Cavity-assisted measurement and coherent control of collective atomic spin oscillators

    Full text link
    We demonstrate continuous measurement and coherent control of the collective spin of an atomic ensemble undergoing Larmor precession in a high-finesse optical cavity. The coupling of the precessing spin to the cavity field yields phenomena similar to those observed in cavity optomechanics, including cavity amplification, damping, and optical spring shifts. These effects arise from autonomous optical feedback onto the atomic spin dynamics, conditioned by the cavity spectrum. We use this feedback to stabilize the spin in either its high- or low-energy state, where, in equilibrium with measurement back-action heating, it achieves a steady-state temperature, indicated by an asymmetry between the Stokes and anti-Stokes scattering rates. For sufficiently large Larmor frequency, such feedback stabilizes the spin ensemble in a nearly pure quantum state, in spite of continuous measurement by the cavity field.Comment: 5 pages, 4 figures, and supplemental materia

    Laser Cooling of Transition Metal Atoms

    Full text link
    We propose the application of laser cooling to a number of transition-metal atoms, allowing numerous bosonic and fermionic atomic gases to be cooled to ultra-low temperatures. The non-zero electron orbital angular momentum of these atoms implies that strongly atom-state-dependent light-atom interactions occur even for light that is far-detuned from atomic transitions. At the same time, many transition-metal atoms have small magnetic dipole moments in their low-energy states, reducing the rate of dipolar-relaxation collisions. Altogether, these features provide compelling opportunities for future ultracold-atom research. Focusing on the case of atomic titanium, we identify the metastable a5F5a ^5F_5 state as supporting a Jβ†’J+1J \rightarrow J+1 optical transition with properties similar to the D2 transition of alkali atoms, and suited for laser cooling. The high total angular momentum and electron spin of this state suppresses leakage out of the the nearly closed optical transition to a branching ratio estimated below ∼10βˆ’5\sim 10^{-5}. Following the pattern exemplified by titanium, we identify optical transitions that are suited for laser cooling of elements in the scandium group (Sc, Y, La), the titanium group (Ti, Zr), the vanadium group (V, Nb), the manganese group (Mn, Tc), and the iron group (Fe, Ru).Comment: 12 pages, 6 figure
    • …