1,545 research outputs found
Structure of the species-energy relationship
The relationship between energy availability and species richness (the species-energy relationship) is one of the best documented macroecological phenomena. However, the structure of species distribution along the gradient, the proximate driver of the relationship, is poorly known. Here, using data on the distribution of birds in southern Africa, for which species richness increases linearly with energy availability, we provide an explicit determination of this structure. We show that most species exhibit increasing occupancy towards more productive regions (occurring in more grid cells within a productivity class). However, average reporting rates per species within occupied grid cells, a correlate of local density, do not show a similar increase. The mean range of used energy levels and the mean geographical range size of species in southern Africa decreases along the energy gradient, as most species are present at high productivity levels but only some can extend their ranges towards lower levels. Species turnover among grid cells consequently decreases towards high energy levels. In summary, these patterns support the hypothesis that higher productivity leads to more species by increasing the probability of occurrence of resources that enable the persistence of viable populations, without necessarily affecting local population densities
Monte Carlo transient phonons transport in silicon and germanium at nanoscales
Heat transport at nanoscales in semiconductors is investigated with a
statistical method. The Boltzmann Transport Equation (BTE) which characterize
phonons motion and interaction within the crystal lattice has been simulated
with a Monte Carlo technique. Our model takes into account media frequency
properties through the dispersion curves for longitudinal and transverse
acoustic branches. The BTE collisional term involving phonons scattering
processes is simulated with the Relaxation Times Approximation theory. A new
distribution function accounting for the collisional processes has been
developed in order to respect energy conservation during phonons scattering
events. This non deterministic approach provides satisfactory results in what
concerns phonons transport in both ballistic and diffusion regimes. The
simulation code has been tested with silicon and germanium thin films;
temperature propagation within samples is presented and compared to analytical
solutions (in the diffusion regime). The two materials bulk thermal
conductivity is retrieved for temperature ranging between 100 K and 500 K. Heat
transfer within a plane wall with a large thermal gradient (250 K-500 K) is
proposed in order to expose the model ability to simulate conductivity thermal
dependence on heat exchange at nanoscales. Finally, size effects and validity
of heat conduction law are investigated for several slab thicknesses
Association Between Residential Greenness and Cardiovascular Disease Risk
Background Exposure to green vegetation has been linked to positive health, but the pathophysiological processes affected by exposure to vegetation remain unclear. To study the relationship between greenness and cardiovascular disease, we examined the association between residential greenness and biomarkers of cardiovascular injury and disease risk in susceptible individuals. Methods and Results In this cross-sectional study of 408 individuals recruited from a preventive cardiology clinic, we measured biomarkers of cardiovascular injury and risk in participant blood and urine. We estimated greenness from satellite-derived normalized difference vegetation index ( NDVI ) in zones with radii of 250 m and 1 km surrounding the participants' residences. We used generalized estimating equations to examine associations between greenness and cardiovascular disease biomarkers. We adjusted for residential clustering, demographic, clinical, and environmental variables. In fully adjusted models, contemporaneous NDVI within 250 m of participant residence was inversely associated with urinary levels of epinephrine (-6.9%; 95% confidence interval, -11.5, -2.0/0.1 NDVI ) and F2-isoprostane (-9.0%; 95% confidence interval, -15.1, -2.5/0.1 NDVI ). We found stronger associations between NDVI and urinary epinephrine in women, those not on β-blockers, and those who had not previously experienced a myocardial infarction. Of the 15 subtypes of circulating angiogenic cells examined, 11 were inversely associated (8.0-15.6% decrease/0.1 NDVI ), whereas 2 were positively associated (37.6-45.8% increase/0.1 NDVI ) with contemporaneous NDVI . Conclusions Independent of age, sex, race, smoking status, neighborhood deprivation, statin use, and roadway exposure, residential greenness is associated with lower levels of sympathetic activation, reduced oxidative stress, and higher angiogenic capacity
Computing Nash Equilibrium in Wireless Ad Hoc Networks: A Simulation-Based Approach
This paper studies the problem of computing Nash equilibrium in wireless
networks modeled by Weighted Timed Automata. Such formalism comes together with
a logic that can be used to describe complex features such as timed energy
constraints. Our contribution is a method for solving this problem using
Statistical Model Checking. The method has been implemented in UPPAAL model
checker and has been applied to the analysis of Aloha CSMA/CD and IEEE 802.15.4
CSMA/CA protocols.Comment: In Proceedings IWIGP 2012, arXiv:1202.422
ARL3 mutations cause Joubert syndrome by disrupting ciliary protein composition
Joubert syndrome (JBTS) is a genetically heterogeneous autosomal recessive neurodevelopmental
ciliopathy. We investigated further the underlying genetic etiology of Joubert syndrome by studying
two unrelated families in whom JBTS was not associated with pathogenic variants in known JBTSrelated
genes. Combined autozygosity mapping of both families highlighted a candidate locus on
chromosome 10 (chr10: 101569997-109106128 (hg 19)), and exome sequencing revealed two
missense variants in ARL3 within the candidate locus. The encoded protein, ADP Ribosylation
Factor-Like GTPase 3, ARL3, is a small GTP-binding protein that is involved in directing lipid-modified
proteins into the cilium in a GTP-dependent manner. Both missense variants replace the highly
conserved Arg149 residue, which we show to be necessary for the interaction with its guanine
nucleotide exchange factor ARL13B, such that the mutant protein is associated with reduced INPP5E
and NPHP3 localisation in cilia. We propose that ARL3 provides a potential hub in the network of
encoded ciliopathy genes, whereby perturbation of ARL3 results in the mislocalisation of multiple
ciliary proteins due to abnormal displacement of lipidated protein cargo
Photon Physics in Heavy Ion Collisions at the LHC
Various pion and photon production mechanisms in high-energy nuclear
collisions at RHIC and LHC are discussed. Comparison with RHIC data is done
whenever possible. The prospect of using electromagnetic probes to characterize
quark-gluon plasma formation is assessed.Comment: Writeup of the working group "Photon Physics" for the CERN Yellow
Report on "Hard Probes in Heavy Ion Collisions at the LHC", 134 pages. One
figure added in chapter 5 (comparison with PHENIX data). Some figures and
correponding text corrected in chapter 6 (off-chemical equilibrium thermal
photon rates). Some figures modified in chapter 7 (off-chemical equilibrium
photon rates) and comparison with PHENIX data adde
24-Hour Rhythms of DNA Methylation and Their Relation with Rhythms of RNA Expression in the Human Dorsolateral Prefrontal Cortex
Circadian rhythms modulate the biology of many human tissues, including brain tissues, and are driven by a near 24-hour transcriptional feedback loop. These rhythms are paralleled by 24-hour rhythms of large portions of the transcriptome. The role of dynamic DNA methylation in influencing these rhythms is uncertain. While recent work in Neurospora suggests that dynamic site-specific circadian rhythms of DNA methylation may play a role in modulating the fungal molecular clock, such rhythms and their relationship to RNA expression have not, to our knowledge, been elucidated in mammalian tissues, including human brain tissues. We hypothesized that 24-hour rhythms of DNA methylation exist in the human brain, and play a role in driving 24-hour rhythms of RNA expression. We analyzed DNA methylation levels in post-mortem human dorsolateral prefrontal cortex samples from 738 subjects. We assessed for 24-hour rhythmicity of 420,132 DNA methylation sites throughout the genome by considering methylation levels as a function of clock time of death and parameterizing these data using cosine functions. We determined global statistical significance by permutation. We then related rhythms of DNA methylation with rhythms of RNA expression determined by RNA sequencing. We found evidence of significant 24-hour rhythmicity of DNA methylation. Regions near transcription start sites were enriched for high-amplitude rhythmic DNA methylation sites, which were in turn time locked to 24-hour rhythms of RNA expression of nearby genes, with the nadir of methylation preceding peak transcript expression by 1–3 hours. Weak ante-mortem rest-activity rhythms were associated with lower amplitude DNA methylation rhythms as were older age and the presence of Alzheimer's disease. These findings support the hypothesis that 24-hour rhythms of DNA methylation, particularly near transcription start sites, may play a role in driving 24-hour rhythms of gene expression in the human dorsolateral prefrontal cortex, and may be affected by age and Alzheimer's disease
Black Hole Hair Removal: Non-linear Analysis
BMPV black holes in flat transverse space and in Taub-NUT space have
identical near horizon geometries but different microscopic degeneracies. It
has been proposed that this difference can be accounted for by different
contribution to the degeneracies of these black holes from hair modes, --
degrees of freedom living outside the horizon. In this paper we explicitly
construct the hair modes of these two black holes as finite bosonic and
fermionic deformations of the black hole solution satisfying the full
non-linear equations of motion of supergravity and preserving the supersymmetry
of the original solutions. Special care is taken to ensure that these solutions
do not have any curvature singularity at the future horizon when viewed as the
full ten dimensional geometry. We show that after removing the contribution due
to the hair degrees of freedom from the microscopic partition function, the
partition functions of the two black holes agree.Comment: 40 pages, LaTe
On convergent series representations of Mellin-Barnes integrals
Multiple Mellin-Barnes integrals are often used for perturbative calculations
in particle physics. In this context, the evaluation of such objects may be
performed through residues calculations which lead to their expression as
multiple series in powers and logarithms of the parameters involved in the
problem under consideration. However, in most of the cases, several series
representations exist for a given integral. They converge in different regions
of values of the parameters, and it is not obvious to obtain them. For twofold
integrals we present a method which allows to derive straightforwardly and
systematically: (a) different sets of poles which correspond to different
convergent double series representations of a given integral, (b) the regions
of convergence of all these series (without an a priori full knowledge of their
general term), and (c) the general term of each series (this may be performed,
if necessary, once the relevant domain of convergence has been found). This
systematic procedure is illustrated with some integrals which appear, among
others, in the calculation of the two-loop hexagon Wilson loop in N = 4 SYM
theory. Mellin-Barnes integrals of higher dimension are also considered.Comment: 49 pages, 16 figure
- …