19,316 research outputs found
Acceleration and Deceleration in Curvature Induced Phantom Model of the Late and Future Universe, Cosmic Collapse as Well as its Quantum Escape
Here, cosmology of the late and future universe is obtained from
-gravity with non-linear curvature terms and ( being the
Ricci scalar curvature). It is different from -dark enrgy models, where
non-linear curvature terms are taken as gravitational alternative of dark
energy. In the present model, neither linear nor no-linear curvature terms are
taken as dark energy. Rather, dark energy terms are induced by curvature terms
in the Friedmann equation derived from -gravitational equations. It has
advantage over - dark energy models in the sense that the present model
satisfies WMAP results and expands as during matter-dominance.
So, it does not have problems due to which -dark energy models are
criticized. Curvature-induced dark energy, obtained here, mimics phantom.
Different phases of this model, including acceleration and deceleration during
phantom phase, are investigated here.It is found that expansion of the universe
will stop at the age ( being the present
age of the universe) and after this epoch, it will contract and collapse by the
time . Further,it is shown that universe will
escape predicted collapse (obtained using classical mechanics) on making
quantum gravity corrections relevant near collapse time due to extremely high
energy density and large curvature analogous to the state of very early
universe. Interestingly, cosmological constant is also induced here, which is
very small in classical domain, but very high in quantum domain.Comment: 33 page
Means and method for calibrating a photon detector utilizing electron-photon coincidence
An arrangement for calibrating a photon detector particularly applicable for the ultraviolet and vacuum ultraviolet regions is based on electron photon coincidence utilizing crossed electron beam atom beam collisions. Atoms are excited by electrons which lose a known amount of energy and scatter with a known remaining energy, while the excited atoms emit photons of known radiation. Electrons of the known remaining energy are separated from other electrons and are counted. Photons emitted in a direction related to the particular direction of scattered electrons are detected to serve as a standard. Each of the electrons is used to initiate the measurements of a time interval which terminates with the arrival of a photon exciting the photon detector. Only the number of time intervals related to the coincidence correlation and of electrons scattered in the particular direction with the known remaining energy and photons of a particular radiation level emitted due to the collisions of such scattered electrons are counted. The detector calibration is related to the number of counted electrons and photons
A Low-cost, Lightweight, and Miniaturized Time-of-flight Mass Spectrometer (TOFMS)
Time-of-flight mass spectrometers (TOFMS) are commonly used for mass analysis and for the measurement of energy distributions of charged particles. For achieving high mass and energy resolution these instruments generally comprise long flight tubes, often as long as a few meters. This necessitates high voltages and a very clean environment. These requirements make them bulky and heavy. We have developed an instrument and calibration techniques that are based on the design principles of TOFMS. However, instead of one long flight tube it consists of a series of cylindrical electrostatic lenses that confine ions under study along the axis of the flight tube
- …