637 research outputs found

    Hydrodynamical simulations of cluster formation with central AGN heating

    Full text link
    We analyse a hydrodynamical simulation model for the recurrent heating of the central intracluster medium (ICM) by active galactic nuclei (AGN). Besides the self-gravity of the dark matter and gas components, our approach includes the radiative cooling and photoheating of the gas, as well as a subresolution multiphase model for star formation and supernova feedback. Additionally, we incorporate a periodic heating mechanism in the form of hot, buoyant bubbles, injected into the intragalactic medium (IGM) during the active phases of the accreting central AGN. We use simulations of isolated cluster halos of different masses to study the bubble dynamics and the heat transport into the IGM. We also apply our model to self-consistent cosmological simulations of the formation of galaxy clusters with a range of masses. Our numerical schemes explore a variety of different assumptions for the spatial configuration of AGN-driven bubbles, for their duty cycles and for the energy injection mechanism, in order to obtain better constraints on the underlying physical picture. We argue that AGN heating can substantially affect the properties of both the stellar and gaseous components of clusters of galaxies. Most importantly, it alters the properties of the central dominant (cD) galaxy by reducing the mass deposition rate of freshly cooled gas out of the ICM, thereby offering an energetically plausible solution to the cooling flow problem. At the same time, this leads to reduced or eliminated star formation in the central cD galaxy, giving it red stellar colours as observed.Comment: 22 pages, 15 figures, minor revisions, MNRAS accepte

    The unorthodox evolution of major merger remnants into star-forming spiral galaxies

    Full text link
    Galaxy mergers are believed to play a key role in transforming star-forming disk galaxies into quenched ellipticals. Most of our theoretical knowledge about such morphological transformations does, however, rely on idealised simulations where processes such as cooling of hot halo gas into the disk and gas accretion in the post-merger phase are not treated in a self-consistent cosmological fashion. In this paper we study the morphological evolution of the stellar components of four major mergers occurring at z=0.5 in cosmological hydrodynamical zoom-simulations. In all simulations the merger reduces the disk mass-fraction, but all galaxies simulated at our highest resolution regrow a significant disk by z=0 (with a disk fraction larger than 24%). For runs with our default physics model, which includes galactic winds from star formation and black hole feedback, none of the merger remnants are quenched, but in a set of simulations with stronger black hole feedback we find that major mergers can indeed quench galaxies. We conclude that major merger remnants commonly evolve into star-forming disk galaxies, unless sufficiently strong AGN feedback assists in the quenching of the remnant.Comment: 15 pages, 9 figures, Accepted for publication in MNRA

    Shock finding on a moving-mesh: I. Shock statistics in non-radiative cosmological simulations

    Full text link
    Cosmological shock waves play an important role in hierarchical structure formation by dissipating and thermalizing kinetic energy of gas flows, thereby heating the universe. Furthermore, identifying shocks in hydrodynamical simulations and measuring their Mach number accurately is critical for calculating the production of non-thermal particle components through diffusive shock acceleration. However, shocks are often significantly broadened in numerical simulations, making it challenging to implement an accurate shock finder. We here introduce a refined methodology for detecting shocks in the moving-mesh code AREPO, and show that results for shock statistics can be sensitive to implementation details. We put special emphasis on filtering against spurious shock detections due to tangential discontinuities and contacts. Both of them are omnipresent in cosmological simulations, for example in the form of shear-induced Kelvin-Helmholtz instabilities and cold fronts. As an initial application of our new implementation, we analyse shock statistics in non-radiative cosmological simulations of dark matter and baryons. We find that the bulk of energy dissipation at redshift zero occurs in shocks with Mach numbers around M2.7{\cal M}\approx2.7. Furthermore, almost 40%40\% of the thermalization is contributed by shocks in the warm hot intergalactic medium (WHIM), whereas 60%\approx60\% occurs in clusters, groups and smaller halos. Compared to previous studies, these findings revise the characterization of the most important shocks towards higher Mach numbers and lower density structures. Our results also suggest that regions with densities above and below δb=100\delta_b=100 should be roughly equally important for the energetics of cosmic ray acceleration through large-scale structure shocks.Comment: 16 pages, 13 figures, published in MNRAS, January 201

    Zooming in on major mergers: dense, starbursting gas in cosmological simulations

    Full text link
    We introduce the `Illustris zoom simulation project', which allows the study of selected galaxies forming in the Λ\LambdaCDM cosmology with a 40 times better mass resolution than in the parent large-scale hydrodynamical Illustris simulation. We here focus on the starburst properties of the gas in four cosmological simulations of major mergers. The galaxies in our high-resolution zoom runs exhibit a bursty mode of star formation with gas consumption timescales 10 times shorter than for the normal star formation mode. The strong bursts are only present in the simulations with the highest resolution, hinting that a too low resolution is the reason why the original Illustris simulation showed a dearth of starburst galaxies. Very pronounced bursts of star formation occur in two out of four major mergers we study. The high star formation rates, the short gas consumption timescales and the morphology of these systems strongly resemble observed nuclear starbursts. This is the first time that a sample of major mergers is studied through self-consistent cosmological hydrodynamical simulations instead of using isolated galaxy models setup on a collision course. We also study the orbits of the colliding galaxies and find that the starbursting gas preferentially appears in head-on mergers with very high collision velocities. Encounters with large impact parameters do typically not lead to the formation of starbursting gas.Comment: 13 pages, 7 figures, Accepted for publication in MNRA

    The history of star formation in a LCDM universe

    Full text link
    Employing hydrodynamic simulations of structure formation in a LCDM cosmology, we study the history of cosmic star formation from the "dark ages" at redshift z~20 to the present. In addition to gravity and ordinary hydrodynamics, our model includes radiative heating and cooling of gas, star formation, supernova feedback, and galactic winds. By making use of a comprehensive set of simulations on interlocking scales and epochs, we demonstrate numerical convergence of our results on all relevant halo mass scales, ranging from 10^8 to 10^15 Msun/h. The predicted density of cosmic star formation is broadly consistent with measurements, given observational uncertainty. From the present epoch, it gradually rises by about a factor of ten to a peak at z~5-6, which is beyond the redshift range where it has been estimated observationally. 50% of the stars are predicted to have formed by redshift z~2.1, and are thus older than 10.4 Gyr, while only 25% form at redshifts lower than z~1. The mean age of all stars at the present is about 9 Gyr. Our model predicts a total stellar density at z=0 of Omega_*=0.004, corresponding to about 10% of all baryons being locked up in long-lived stars, in agreement with recent determinations of the luminosity density of the Universe. We determine the "multiplicity function of cosmic star formation" as a function of redshift; i.e. the distribution of star formation with respect to halo mass. We also briefly examine possible implications of our predicted star formation history for reionisation of hydrogen in the Universe. We find that the star formation rate predicted by the simulations is sufficient to account for hydrogen reionisation by z~6, but only if a high escape fraction close to unity is assumed. (abridged)Comment: updated to match published version, minor plotting error in Fig.12 corrected, 25 pages, version with high-resolution figures available at http://www.mpa-garching.mpg.de/~volker/paper_sfr

    On the operation of the chemothermal instability in primordial star-forming clouds

    Full text link
    We investigate the operation of the chemothermal instability in primordial star-forming clouds with a suite of three-dimensional, moving-mesh simulations. In line with previous studies, we find that the gas at the centre of high-redshift minihaloes becomes chemothermally unstable as three-body reactions convert the atomic hydrogen into a fully molecular gas. The competition between the increasing rate at which the gas cools and the increasing optical depth to H2 line emission creates a characteristic dip in the cooling time over the free-fall time on a scale of 100 au. As a result, the free-fall time decreases to below the sound-crossing time, and the cloud may become gravitationally unstable and fragment on a scale of a few tens of au during the initial free-fall phase. In three of the nine haloes investigated, secondary clumps condense out of the parent cloud, which will likely collapse in their own right before they are accreted by the primary clump. In the other haloes, fragmentation at such an early stage is less likely. However, given that previous simulations have shown that the infall velocity decreases substantially once the gas becomes rotationally supported, the amount of time available for perturbations to develop may be much greater than is evident from the limited period of time simulated here.Comment: 17 pages, 12 figures, accepted for publication in MNRAS, simulation movie available at http://www.cfa.harvard.edu/~tgrei

    Simulating a metallicity-dependent initial mass function: Consequences for feedback and chemical abundances

    Full text link
    Observational and theoretical arguments increasingly suggest that the initial mass function (IMF) of stars may depend systematically on environment, yet most galaxy formation models to date assume a universal IMF. Here we investigate simulations of the formation of Milky Way analogues run with an empirically derived metallicity-dependent IMF and the moving-mesh code AREPO in order to characterize the associated uncertainties. In particular, we compare a constant Chabrier and a varying metallicity-dependent IMF in cosmological, magneto-hydrodynamical zoom-in simulations of Milky Way-sized halos. We find that the non-linear effects due to IMF variations typically have a limited impact on the morphology and the star formation histories of the formed galaxies. Our results support the view that constraints on stellar-to-halo mass ratios, feedback strength, metallicity evolution and metallicity distributions are in part degenerate with the effects of a non-universal, metallicity-dependent IMF. Interestingly, the empirical relation we use between metallicity and the high mass slope of the IMF does not aid in the quenching process. It actually produces up to a factor of 2-3 more stellar mass if feedback is kept constant. Additionally, the enrichment history and the z = 0 metallicity distribution are significantly affected. In particular, the alpha enhancement pattern shows a steeper dependence on iron abundance in the metallicity-dependent model, in better agreement with observational constraints.Comment: 9 pages, published in MNRA
    corecore