110 research outputs found
Radiolytic H\u3csub\u3e2\u3c/sub\u3e Production in Martian Environments
Hydrogen, produced by water radiolysis, has been suggested to support microbial communities on Mars. We quantitatively assess the potential magnitude of radiolytic H2 production in wet martian environments (the ancient surface and the present subsurface) based on the radionuclide compositions of (1) eight proposed Mars 2020 landing sites, and (2) three sites that individually yield the highest or lowest calculated radiolytic H2 production rates on Mars. For the proposed landing sites, calculated H2 production rates vary by a factor of ∼1.6, while the three comparison sites differ by a factor of ∼6. Rates in wet martian sediment and microfractured rock are comparable with rates in terrestrial environments that harbor low concentrations of microbial life (e.g., subseafloor basalt). Calculated H2 production rates for low-porosity (M/year) are mostly higher than rates for South Pacific subseafloor basalt (∼0.02–0.6 nM/year). Production rates in martian high-porosity sediment (\u3e35%) and microfractured (1 μm) hard rock (0.03 toM/year) are generally similar to rates in South Pacific basalt, while yields for larger martian fractures (1 and 10 cm) are one to two orders of magnitude lower (M/year). If minerals or brine that amplify radiolytic H2 production rates are present, H2 yields exceed the calculated rates
A quantitative model of water radiolysis and chemical production rates near radionuclide-containing solids
We present a mathematical model that quantifies the rate of water radiolysis near radionuclide-containing solids. Our model incorporates the radioactivity of the solid along with the energies and attenuation properties for alpha (α), beta (β), and gamma (γ) radiation to calculate volume normalized dose rate profiles. In the model, these dose rate profiles are then used to calculate radiolytic hydrogen (H2) and hydrogen peroxide (H2O2) production rates as a function of distance from the solid–water interface. It expands on previous water radiolysis models by incorporating planar or cylindrical solid–water interfaces and by explicitly including γ radiation in dose rate calculations. To illustrate our model\u27s utility, we quantify radiolytic H2 and H2O2 production rates surrounding spent nuclear fuel under different conditions (at 20 years and 1000 years of storage, as well as before and after barrier failure). These examples demonstrate the extent to which α, β and γ radiation contributes to total absorbed dose rate and radiolytic production rates. The different cases also illustrate how H2 and H2O2 yields depend on initial composition, shielding and age of the solid. In this way, the examples demonstrate the importance of including all three types of radiation in a general model of total radiolytic production rates
Determination of in situ dissolved inorganic carbon concentration and alkalinity for marine sedimentary porewater
Dissolved inorganic carbon (DIC) concentration and total alkalinity in marine sediment vary with biological activity, mineral diagenesis and past bottom ocean water composition. Reliable interpretation of this data is often compromised due to precipitation of calcium carbonate (CaCO3) during sediment recovery, processing and sample storage. Here we present and test a method that corrects for this precipitation and consequently allows quantification of in situ carbonate system chemistry. Our method relies on the over-determination of the dissolved carbonate system by (i) measuring DIC, alkalinity and calcium, and (ii) explicitly assuming CaCO3 saturation in the sediment. We experimentally tested this method using data from Integrated Ocean Drilling Program (IODP) Site U1368 in the South Pacific Gyre. Our results show that we can accurately reproduce in situ aqueous carbonate system chemistry if DIC, alkalinity and calcium concentration are measured simultaneously. At Site U1368, the correction for sampling associated precipitation is equivalent to 4.5 and 8.9% of the measured DIC and alkalinity, respectively. The method is well suited for any sediment porewater that is saturated with respect to calcium carbonate; consequently, it is applicable for approximately 50% of the global oceanic seafloor
Subseafloor life and its biogeochemical impacts
Subseafloor microbial activities are central to Earth’s biogeochemical cycles. They control Earth’s surface oxidation and major aspects of ocean chemistry. They affect climate on long timescales and play major roles in forming and destroying economic resources. In this review, we evaluate present understanding of subseafloor microbes and their activities, identify research gaps, and recommend approaches to filling those gaps. Our synthesis suggests that chemical diffusion rates and reaction affinities play a primary role in controlling rates of subseafloor activities. Fundamental aspects of subseafloor communities, including features that enable their persistence at low catabolic rates for millions of years, remain unknown
Reconstruction of Pacific Ocean Bottom Water Salinity During the Last Glacial Maximum
Knowledge of salinity in the deep ocean is important for understanding past ocean circulation and climate. Based on sedimentary pore fluid chloride measurements of a single Pacific site, Adkins et al. (2002) suggested that, during the Last Glacial Maximum (LGM), the Pacific deep bottom water was saltier than expected based on lower sea level alone. Here we present high-resolution salinity profiles from five sites in the South, Equatorial, and North Pacific Ocean. Our study greatly constrains understanding of LGM salinity in the Pacific Ocean. Our results show that LGM chloride concentrations of deep Pacific bottom water were 4.09 ± 0.4% greater than today\u27s values. Pacific Ocean bottom water salinity was also indistinguishable from being homogeneous across the wide range of latitudes studied here. These LGM salinity reconstructions are on average slightly higher (~1.4 to 1% higher) than expected from sea level of the time, which is generally inferred to have been ~120 to ~135 m lower than today
Deep North Atlantic last glacial maximum salinity reconstruction
Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 36(7), (2021): e2020PA004088, https://doi.org/10.1029/2020PA004088.We reconstruct deep water-mass salinities and spatial distributions in the western North Atlantic during the Last Glacial Maximum (LGM, 19–26 ka), a period when atmospheric CO2 was significantly lower than it is today. A reversal in the LGM Atlantic meridional bottom water salinity gradient has been hypothesized for several LGM water-mass reconstructions. Such a reversal has the potential to influence climate, ocean circulation, and atmospheric CO2 by increasing the thermal energy and carbon storage capacity of the deep ocean. To test this hypothesis, we reconstructed LGM bottom water salinity based on sedimentary porewater chloride profiles in a north-south transect of piston cores collected from the deep western North Atlantic. LGM bottom water salinity in the deep western North Atlantic determined by the density-based method is 3.41–3.99 ± 0.15% higher than modern values at these sites. This increase is consistent with: (a) the 3.6% global average salinity change expected from eustatic sea level rise, (b) a northward expansion of southern sourced deep water, (c) shoaling of northern sourced deep water, and (d) a reversal of the Atlantic's north-south deep water salinity gradient during the LGM.This work was supported by the US National Science Foundation (grant numbers 1433150 and 1537485).2021-10-2
Radiolytic Hydrogen Production in the Subseafloor Basaltic Aquifer
Hydrogen (H2) is produced in geological settings by dissociation of water due to radiation from radioactive decay of naturally occurring uranium (238U, 235U), thorium (232Th) and potassium (40K). To quantify the potential significance of radiolytic H2 as an electron donor for microbes within the South Pacific subseafloor basaltic aquifer, we use radionuclide concentrations of 43 basalt samples from IODP Expedition 329 to calculate radiolytic H2 production rates in basement fractures. The samples are from three sites with very different basement ages and a wide range of alteration types. U, Th, and K concentrations vary by up to an order of magnitude from sample to sample at each site. Comparison of our samples to each other and to the results of previous studies of unaltered East Pacific Rise basalt suggests that significant variations in radionuclide concentrations are due to differences in initial (unaltered basalt) concentrations (which can vary between eruptive events) and post-emplacement alteration. However, there is no clear relationship between alteration type and calculated radiolytic yields. Local maxima in U, Th, and K produce hotspots of H2production, causing calculated radiolytic rates to differ by up to a factor of 80 from sample to sample. Fracture width also greatly influences H2 production, where microfractures are hotspots for radiolytic H2 production. For example, H2 production rates normalized to water volume are 190 times higher in 1 μm wide fractures than in fractures that are 10 cm wide. To assess the importance of water radiolysis for microbial communities in subseafloor basaltic aquifers, we compare electron transfer rates from radiolysis to rates from iron oxidation in subseafloor basalt. Radiolysis appears likely to be a more important electron donor source than iron oxidation in old (\u3e10 Ma) basement basalt. Radiolytic H2 production in the volume of water adjacent to a square cm of the most radioactive SPG basalt may support as many as 1500 cells
Dust, Volcanic Ash, and the Evolution of the South Pacific Gyre through the Cenozoic
We examine the 0–100 Ma paleoceanographic record retained in pelagic clay from the South Pacific Gyre (SPG) by analyzing 47 major, trace, and rare earth elements in bulk sediment in 206 samples from seven sites drilled during Integrated Ocean Drilling Program Expedition 329. We use multivariate statistical analyses (Q-mode factor analysis and multiple linear regression) of the geochemical data to construct a model of bulk pelagic clay composition and mass accumulation rates (MAR) of six end-members, (post-Archean average Australian shale, rhyolite, basalt, Fe-Mn-oxyhydroxides, apatite, and excess Si). Integrating the results with Co-based age models at Sites U1365, U1366, U1369, and U1370, we link changes in MAR of these components to global oceanographic, terrestrial, and climatic transformations through the Cenozoic. Our results track the spatial extent (thousands of kilometers) of dust deposition in the SPG during the aridification of Australia. Dispersed ash is a significant component of the pelagic clay, often comprising \u3e50% by mass, and records episodes of Southern Hemisphere volcanism. Because both are transported by wind, the correlation of dust and ash MAR depends on the site\u27s latitude and suggests meridional shifts in the position of atmospheric circulation cells. The hydrothermal MARs provide evidence for rapid deposition from the Osbourn Trough spreading ridge before it went extinct. Excess Si MARs show that the abrupt increase in siliceous productivity observed at Site U1371 also extended at least as far north as Sites U1369 and U1370, suggesting large-scale reorganizations of oceanic Si distributions ~10–8 Ma in the southern SPG
Assessment and Use of NGR Instrumentation on the JOIDES Resolution to Quantify U, Th, and K Concentrations in Marine Sediment
No abstract available.
doi:10.2204/iodp.sd.15.05.2013</a
Relationship of bacterial richness to organic degradation rate and sediment age in subseafloor sediment
© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Applied and Environmental Microbiology 82 (2016): 4994-4999, doi:10.1128/AEM.00809-16.Subseafloor sediment hosts a large, taxonomically rich and metabolically diverse microbial ecosystem. However, the factors that control microbial diversity in subseafloor sediment have rarely been explored. Here we show that bacterial richness varies with organic degradation rate and sediment age. At three open-ocean sites (in the Bering Sea and equatorial Pacific) and one continental margin site (Indian Ocean), richness decreases exponentially with increasing sediment depth. The rate of decrease in richness with depth varies from site to site. The vertical succession of predominant terminal electron acceptors correlates to abundance-weighted community composition, but does not drive the vertical decrease in richness. Vertical patterns of richness at the open-ocean sites closely match organic degradation rates; both properties are highest near the seafloor and decline together as sediment depth increases. This relationship suggests that (i) total catabolic activity and/or electron donor diversity exerts a primary influence on bacterial richness in marine sediment, and (ii) many bacterial taxa that are poorly adapted for subseafloor sedimentary conditions are degraded in the geologically young sediment where respiration rates are high. Richness consistently takes a few hundred thousand years to decline from near-seafloor values to much lower values in deep anoxic subseafloor sediment, regardless of sedimentation rate, predominant terminal electron acceptor, or oceanographic context.This work, including the efforts of Mitchell L. Sogin and Steven D’Hondt,
was funded by Sloan Foundation (Census of Deep Life). This work, including
the efforts of Steven D’Hondt, was funded by U.S. Science Support
Program for IODP. This work, including the efforts of Steven
D’Hondt, was funded by National Science Foundation (NSF) (OCE-
0752336 and OCE-0939564).
The work of E. A. Walsh, J. B. Kirkpatrick, R. Pockalny, and J. Sauvage was
funded by the grants to S. D’Hondt
- …