2,127 research outputs found

    Neutrino mass constraint from CMB and its degeneracy with other cosmological parameters

    Full text link
    We show that the cosmic microwave background (CMB) data of WMAP can give subelectronvolt limit on the neutrino mass: m_nu < 0.63 eV (95% CL). We also investigate its degeneracy with other cosmological parameters. In particular, we show the Hubble constant derived from the WMAP data decreases considerably when the neutrino mass is a few times 0.1 eV.Comment: 3 pages, 2 figures, prepared for the TAUP2007 Proceeding

    Searching for Oscillations in the Primordial Power Spectrum: Perturbative Approach (Paper I)

    Full text link
    In this first of two papers, we present a new method for searching for oscillatory features in the primordial power spectrum. A wide variety of models predict these features in one of two different flavors: logarithmically spaced oscillations and linearly spaced oscillations. The proposed method treats the oscillations as perturbations on top of the scale-invariant power spectrum, allowing us to vary all cosmological parameters. This perturbative approach reduces the computational requirements for the search as the transfer functions and their derivatives can be precomputed. We show that the most significant degeneracy in the analysis is between the distance to last scattering and the overall amplitude at low frequencies. For models with logarithmic oscillations, this degeneracy leads to an uncertainty in the phase. For linear spaced oscillations, it affects the frequency of the oscillations. In this first of two papers, we test our code on simulated Planck-like data, and show we are able to recover fiducial input oscillations with an amplitude of a few times order 10^{-2}. We apply the code to WMAP9-year data and confirm the existence of two intriguing resonant frequencies for log spaced oscillations. For linear spaced oscillations we find a single resonance peak. We use numerical simulations to assess the significance of these features and conclude that the data do not provide compelling evidence for the existence of oscillatory features in the primordial spectrum.Comment: 13 pages, 22 figures. Paper 1 of 2. Fixed typos, added reference

    Tuning the stochastic background of gravitational waves using the WMAP data

    Full text link
    The cosmological bound of the stochastic background of gravitational waves is analyzed with the aid of the WMAP data, differently from lots of works in literature, where the old COBE data were used. From our analysis, it will result that the WMAP bounds on the energy spectrum and on the characteristic amplitude of the stochastic background of gravitational waves are greater than the COBE ones, but they are also far below frequencies of the earth-based antennas band. At the end of this letter a lower bound for the integration time of a potential detection with advanced LIGO is released and compared with the previous one arising from the old COBE data. Even if the new lower bound is minor than the previous one, it results very long, thus for a possible detection we hope in the LISA interferometer and in a further growth in the sensitivity of advanced projects.Comment: 9 pages, 2 figures, published in Modern Physics Letters A. arXiv admin note: substantial text overlap with arXiv:0901.119

    A strong first order phase transition in the UMSSM

    Full text link
    In this work, the electroweak phase transition (EWPT) strength has been investigated within the U(1)U(1) extended Minimal Supersymmetric Standard Model (UMSSM) without introducing any exotic fields. We found that the EWPT could be strongly first order for reasonable values of the lightest Higgs and neutralino masses.Comment: talk presented in PASCOS2010, Valencia, Spain from 19-23 Jul. 201

    The Power Spectrum of the Sunyaev-Zel'dovich Effect

    Get PDF
    (Abridged) The hot gas in the IGM produces anisotropies in the Cosmic Microwave Background (CMB) through the thermal Sunyaev-Zel'dovich (SZ) effect. The SZ effect is a powerful probe of large-scale structure in the universe and must be carefully subtracted from measurements of the primary CMB anisotropies. We use moving-mesh hydrodynamical simulations to study the 3-dimensional statistics of the gas, and compute the mean comptonization parameter and the angular power spectrum of the SZ fluctuations, for different cosmologies. We compare these results with predictions using the Press-Schechter formalism. We find that the two methods agree approximately, but differ in details. We discuss this discrepancy, and show that resolution limits the reliability of our results to the 200<l<2000 range. For cluster- normalized CDM models, the SZ power spectrum is comparable to the primordial power spectrum around l=2000. We show that groups and filaments (kT<5 keV) contribute about 50% of the SZ power spectrum at l=500. About half of the SZ power spectrum on these scales is produced at redshifts z<0.1, and can thus be detected and removed using existing catalogs of galaxies and X-ray clusters. We discuss the implications of these results for the future MAP and Planck Surveyor missions.Comment: 21 revtex pages, including 2 tables and 12 figures. To appear in PRD. Minor revisions to match accepted version. Also available at http://www.astro.princeton.edu/~refre
    corecore