31 research outputs found
Seismic Vulnerability Assessment of a Historic Brick Masonry Building by Fragility Functions
This paper aims at contributing to the seismic vulnerability assessment of a historic
brick masonry building constructed in Istanbul by comparison of the derived analytical and
empirical fragility functions. For this purpose, Incremental Dynamic Analysis for each ground
motion record was initially performed by series of Nonlinear Time History Analyses on the
most vulnerable façade of the case study building modelled using Equivalent Frame Method.
By scaling the PGA values of the fifteen earthquake records selected from PEER NGA West2
Data Base, it was aimed to observe the structural response corresponding the all limit states
from yield point to collapse and identify each PGA causing the structure to reach these limit
states. Herein, PGA and Spectral Displacements were considered as the seismic intensity
parameters, and the ultimate storey drifts were referred as Engineering Demand Parameter.
Both analytical and empirical seismic fragility functions were derived using lognormal
probability distribution. Consequently, the obtained analytical fragility curves for vulnerability
assessment of the building were compared with the fragility curves derived according to
European (RISK-UE), HAZUS and Istanbul Building Taxonomies for the same building
classification with the case study building in attempt to investigate the concordance of the
results.publishedVersio
Recommended from our members
Long-Term Monitoring and Identification of Bridge Structural Parameters
Vibration of a new concrete bridge was monitored and change in the bridge structural stiffness was identified accordingly over a 5-year period. This three-span 111-m long bridge is instrumented with 13 acceleration sensors at both the superstructure and the columns. The sensor data are transmitted to a server computer wirelessly. Modal parameters of the bridge, that is, the frequencies and the modal shapes were identified by processing 1,707 vibration data sets collected under traffic excitations, based on which the bridge structural parameters, stiffness and mass, and the soil spring values were identified by employing the neural network technique. The identified superstructure stiffness at the beginning of the monitoring was 97% of the stiffness value based on the design drawings. In the identified modal frequencies, a variation from −10% to +10% was observed over the monitoring period. In the identified stiffness values of the bridge superstructure, a variation from −3% to +3% was observed over the monitoring period. Based on the statistical analysis of the collected data for each year, 5% decrease in the first modal frequency and 2% decrease in the superstructure stiffness were observed over the 5-year monitoring period. Probability density functions were obtained for stiffness values each year. Stiffness threshold values for the collapse of the bridge under the operational loading can be determined. Then the number of years can be assessed for which the area under the proposed probability density functions is greater than the threshold value. So the information obtained in this study is valuable for studying aging and long-term performance assessment of similar bridges
Seismic analysis of a masonry arch bridge using multiple methodologies
Masonry arch bridges form a noteworthy portion of road and railway networks in Europe and Turkey. Structural assessment of such bridges is often required because of their vulnerability to seismic actions. However, there are no standardized or widely accepted procedures, and the available assessment methods comprise significant uncertainties. This paper presents a seismic assessment of a stone masonry arch bridge using different methodologies by investigating the seismic behavior of masonry arch bridges and the uncertainties in the assessment methods presented. The Finite Element (FE) macro-modeling approach is used in modeling the behavior of the structure under investigation, after undertaking ambient vibration testing and dynamic identification study to determine the dynamic parameters of the structure. These experimental parameters were used to update the FE model before performing the seismic assessment using Nonlinear Static Analysis (NSA), Nonlinear Dynamic Analysis (NDA) and Incremental Dynamic Analysis (IDA). The IDA helped to depict the complete picture of the seismic behavior, whereas the comparison of the results highlighted the limitations of the NSA and enabled presenting recommendations for future work. In addition, the effects of the interaction of horizontal and vertical components of earthquake records in NDA underlined the necessity for their consideration in similar studies.Peer ReviewedObjectius de Desenvolupament Sostenible::11 - Ciutats i Comunitats Sostenibles::11.b - Per a 2020, augmentar substancialment el nombre de ciutats i assentaments humans que adopten i posen en marxa polÃtiques i plans integrats per promoure la inclusió, l’ús eficient dels recursos, la mitigació del canvi climà tic i l’adaptació a aquest, aixà com la resiliència davant dels desastres, i desenvolupar i posar en prà ctica una gestió integral dels riscos de desastre a tots els nivells, d’acord amb el Marc de Sendai per a la reducció del risc de desastres 2015.2030Objectius de Desenvolupament Sostenible::9 - Indústria, Innovació i InfraestructuraObjectius de Desenvolupament Sostenible::11 - Ciutats i Comunitats SosteniblesPostprint (author's final draft
Recommended from our members
Instantaneous damage detection of bridge structures and experimental verification
An extended Kalman filtering (EKF) method was developed and applied to instantaneously identify elemental stiffness values of a structure during damaging seismic events based on vibration measurement. This method is capable of dealing with nonlinear as well as linear structural responses. Identification of the structural elemental stiffness enables location as well as quantification of structural damage. The instantaneous stiffness values during an event can provide highly useful information for post-event capacity estimation. In this study, a large-scale shaking table test of a three-bent concrete bridge model was performed in order to verify the proposed damage detection method. The bridge model was shaken to different damage levels by a sequence of earthquake motions with increasing intensities. The elemental stiffness values of the structure were instantaneously identified in real time during the damaging earthquake excitations using the EKF method. The identified stiffness degradations and their locations agreed well with the structural damage observed by visual inspection and strain measurements. More importantly, the seismic response accelerations analytically simulated using the instantaneous stiffness values thus identified agreed well with the measured accelerations, demonstrating the accuracy of the identified stiffness. This study presents an experimental verification of a structural damage detection method using a realistic bridge model subjected to realistic seismic damage
Recommended from our members
Large-Scale Shake Table Test Verification of Bridge Condition Assessment Methods
Methods that identify structural component stiffness degradation by pre- and postevent low amplitude vibration measurements, based on a linear time-invariant (LTI) system model, are conceptually justified by examining the hysteresis loops the structural components experience in such vibrations. Two large-scale shake table experiments, one on a two-column reinforced concrete (RC) bridge bent specimen, and the other on a two-span three-bent RC bridge specimen were performed, in which specimens were subjected to earthquake ground motions with increasing amplitude and progressively damaged. In each of the damaged stages between two strong motions, low amplitude vibrations of the specimens were aroused, and the postevent component stiffness coefficients were identified by optimizing the parameters in a LTI model. The stiffness degradation identified is consistent with the experimental hysteresis, and could be quantitatively related to the capacity residual of the components
Recommended from our members
Structural Reliability Estimation with Vibration-Based Identified Parameters
This paper presents a unique structural reliability estimation method incorporating structural parameter identification results based on the seismic response measurement. In the shaking table test, a three-bent concrete bridge model was shaken to different damage levels by a sequence of earthquake motions with increasing intensities. Structural parameters, stiffness and damping values of the bridge were identified under damaging seismic events based on the seismic response measurement. A methodology was developed to understand the importance of structural parameter identification in the reliability estimation. Along this line, a set of structural parameters were generated based on the Monte Carlo simulation. Each of them was assigned to the base bridge model. Then, every bridge model was analyzed using nonlinear time history analyses to obtain damage level at the specific locations. Last, reliability estimation was performed for bridges modeled with two sets of structural parameters. The first one was obtained by the nonlinear time history analysis with the Monte Carlo simulated parameters which is called nonupdated structural parameters. The second one was obtained by updating the first set in Bayesian sense based on the vibration-based identification results which is called updated structural parameters. In the scope of this paper, it was shown that residual reliability of the system estimated using the updated structural parameters is lower than the one estimated using the nonupdated structural parameters
Recommended from our members
Structural Reliability Estimation with Vibration-Based Identified Parameters
This paper presents a unique structural reliability estimation method incorporating structural parameter identification results based on the seismic response measurement. In the shaking table test, a three-bent concrete bridge model was shaken to different damage levels by a sequence of earthquake motions with increasing intensities. Structural parameters, stiffness and damping values of the bridge were identified under damaging seismic events based on the seismic response measurement. A methodology was developed to understand the importance of structural parameter identification in the reliability estimation. Along this line, a set of structural parameters were generated based on the Monte Carlo simulation. Each of them was assigned to the base bridge model. Then, every bridge model was analyzed using nonlinear time history analyses to obtain damage level at the specific locations. Last, reliability estimation was performed for bridges modeled with two sets of structural parameters. The first one was obtained by the nonlinear time history analysis with the Monte Carlo simulated parameters which is called nonupdated structural parameters. The second one was obtained by updating the first set in Bayesian sense based on the vibration-based identification results which is called updated structural parameters. In the scope of this paper, it was shown that residual reliability of the system estimated using the updated structural parameters is lower than the one estimated using the nonupdated structural parameters
Damping in masonry arch railway bridges under service loads: An experimental and numerical investigation
This article investigates the damping behavior of masonry arch bridges under service loads extracted from experimental data and provides guidelines on how to emulate this behavior in numerical analysis, particularly in discrete element model applications. First, an experimental campaign is undertaken and vibrations on three masonry arch railway bridges under train loads were monitored. The modal damping ratios from several sensors on each bridge were extracted by isolating the modal component of free decay vibrations which commence immediately after the train leaves the bridge. The modal damping ratios identified under service loads were compared with their counterparts identified under ambient vibrations. The suitability of mass-proportional, stiffness-proportional and Rayleigh damping models in emulating damping in masonry arch bridges was evaluated. In the numerical phase of the study, a single-arch masonry bridge was modeled using mixed discrete continuum approach and a moving load analysis was conducted without applying any additional viscous damping. The results of the numerical analysis indicate that the inherent damping in discrete element models provided by their nonlinear nature can be sufficient to emulate the damping behavior of masonry arch bridges under service loads. The research provided in this article is unique in the sense that it combines an experimental study and a numerical study on damping of masonry arch bridges under service loads. Unlike its counterparts in literature, which use either ambient vibrations or seismic action, damping values are computed under appropriate levels of vibration amplitudes for service loads, which is critical to estimate the modal damping ratios accurately under these loads.Peer ReviewedPostprint (published version
Recommended from our members
Damage Detection Based On Damping Analysis Of Ambient Vibration Data
Enabling an automated, remote and rapid detection of structural damage, sensor-based structural health monitoring is becoming a powerful tool for maintenance of civil engineering structures. In this study, a baseline-free, time-domain damage detection method was developed for concrete structures, which is based on analysis of nonlinear damping from measured structural vibration responses. The efficacy of the proposed method was demonstrated through a large-scale concrete bridge model subjected to different levels of seismic damage caused by shaking table tests. By applying the random decrement signature technique, the proposed method successfully identified, from its ambient vibration responses, nonlinear damping of the bridge associated with the seismic damage. The amount of the nonlinear damping increases as the seismic damage becomes more severe. This paper also compares the damage detection results with those obtained by stiffness-based methods, demonstrating a strong correlation between the increase in nonlinear damping and the decrease in structural stiffness associated with the increase in damage severity
Dynamic characteristics of stone masonry walls before and after damage: Experimental and numerical investigations
Seismic behavior of masonry walls has been heavily investigated, especially by means of laboratory experiments employing cyclic tests to determine the mechanical parameters and seismic capacity. Nevertheless, the dynamic properties of the tested walls often remain unknown, even though the nature of the seismic response is dynamic and profoundly affected by the structure's dynamic properties. This paper presents an investigation on the dynamic properties of three different masonry wall panels in healthy and damaged states, and examines if damage quantification via tracking the changes in dynamic properties is feasible. Ambient vibration and impact measurements are used for the dynamic identification of wall panels, before and after they are tested in reversed-cyclic in-plane shear-compression tests. The natural frequencies, damping ratios, and mode shapes of the walls are determined and compared to each other. Moreover, the damage progression and its effect on the dynamic features of the URM wall panel is investigated using a discrete element model of the benchmark wall that is validated in terms of the force-displacement response and damage pattern of the wall. The results of the study indicate that changes in natural frequencies and mode shapes are traceable, although it is difficult to infer damage quantification relationships from these changes. The outcomes of this study also highlight that numerical models verified with the nonlinear quasi-static behavior do not necessarily match the wall's dynamic behavior, and that more research is required to update nonlinear numerical models. Overall, the results contribute to the knowledge regarding the dynamic characteristics of masonry walls in healthy and damaged conditions, and to quantify the damage in masonry walls as well as the changes in their dynamic properties.Peer ReviewedObjectius de Desenvolupament Sostenible::11 - Ciutats i Comunitats SosteniblesObjectius de Desenvolupament Sostenible::11 - Ciutats i Comunitats Sostenibles::11.4 - Redoblar els esforços per a protegir i salvaguardar el patrimoni cultural i natural del mónObjectius de Desenvolupament Sostenible::13 - Acció per al ClimaObjectius de Desenvolupament Sostenible::13 - Acció per al Clima::13.1 - Enfortir la resiliència i la capacitat d’adaptació als riscos relacionats amb el clima i els desastres naturals a tots els païsosPreprin