15 research outputs found

    Self-Charging Piezo-Supercapacitor: One-Step Mechanical Energy Conversion and Storage

    No full text
    With the contemplations of ecological and environmental issues related to energy harvesting, piezoelectric nanogenerators (PNGs) may be an accessible, sustainable, and abundant elective wellspring of energy in the future. The PNGs’ power output, however, is dependent on the mechanical energy input, which will be intermittent if the mechanical energy is not continuous. This is a fatal flaw for electronics that need continuous power. Here, a self-charging flexible supercapacitor (PSCFS) is successfully realized that can harvest sporadic mechanical energy, convert it to electrical energy, and simultaneously store power. Initially, chemically processed multimetallic oxide, namely, copper cobalt nickel oxide (CuCoNiO4) is amalgamated within the poly(vinylidene fluoride) (PVDF) framework in different wt % to realize high-performance PNGs. The combination of CuCoNiO4 as filler creates a notable electroactive phase inside the PVDF matrix, and the composite realized by combining 1 wt % CuCoNiO4 with PVDF, coined as PNCU 1, exhibits the highest electroactive phase (>86%). Under periodic hammering (∼100 kPa), PNGs fabricated with this optimized composite film deliver an instantaneous voltage of ∼67.9 V and a current of ∼4.15 μA. Furthermore, PNG 1 is ingeniously integrated into a supercapacitor to construct PSCFS, using PNCU 1 as a separator and CuCoNiO4 nanowires on carbon cloth (CC) as the positive and negative electrodes. The self-charging behavior of the rectifier-free storage device was established under bending deformation. The PSCFS device exhibits ∼845 mV from its initial open-circuit potential ∼35 mV in ∼220 s under periodic bending of 180° at a frequency of 1 Hz. The PSCFS can power up various portable electronic appliances such as calculators, watches, and LEDs. This work offers a high-performance, self-powered device that can be used to replace bulky batteries in everyday electronic devices by harnessing mechanical energy, converting mechanical energy from its environment into electrical energy

    Self-Charging Piezo-Supercapacitor: One-Step Mechanical Energy Conversion and Storage

    No full text
    With the contemplations of ecological and environmental issues related to energy harvesting, piezoelectric nanogenerators (PNGs) may be an accessible, sustainable, and abundant elective wellspring of energy in the future. The PNGs’ power output, however, is dependent on the mechanical energy input, which will be intermittent if the mechanical energy is not continuous. This is a fatal flaw for electronics that need continuous power. Here, a self-charging flexible supercapacitor (PSCFS) is successfully realized that can harvest sporadic mechanical energy, convert it to electrical energy, and simultaneously store power. Initially, chemically processed multimetallic oxide, namely, copper cobalt nickel oxide (CuCoNiO4) is amalgamated within the poly(vinylidene fluoride) (PVDF) framework in different wt % to realize high-performance PNGs. The combination of CuCoNiO4 as filler creates a notable electroactive phase inside the PVDF matrix, and the composite realized by combining 1 wt % CuCoNiO4 with PVDF, coined as PNCU 1, exhibits the highest electroactive phase (>86%). Under periodic hammering (∼100 kPa), PNGs fabricated with this optimized composite film deliver an instantaneous voltage of ∼67.9 V and a current of ∼4.15 μA. Furthermore, PNG 1 is ingeniously integrated into a supercapacitor to construct PSCFS, using PNCU 1 as a separator and CuCoNiO4 nanowires on carbon cloth (CC) as the positive and negative electrodes. The self-charging behavior of the rectifier-free storage device was established under bending deformation. The PSCFS device exhibits ∼845 mV from its initial open-circuit potential ∼35 mV in ∼220 s under periodic bending of 180° at a frequency of 1 Hz. The PSCFS can power up various portable electronic appliances such as calculators, watches, and LEDs. This work offers a high-performance, self-powered device that can be used to replace bulky batteries in everyday electronic devices by harnessing mechanical energy, converting mechanical energy from its environment into electrical energy

    Self-Charging Piezo-Supercapacitor: One-Step Mechanical Energy Conversion and Storage

    No full text
    With the contemplations of ecological and environmental issues related to energy harvesting, piezoelectric nanogenerators (PNGs) may be an accessible, sustainable, and abundant elective wellspring of energy in the future. The PNGs’ power output, however, is dependent on the mechanical energy input, which will be intermittent if the mechanical energy is not continuous. This is a fatal flaw for electronics that need continuous power. Here, a self-charging flexible supercapacitor (PSCFS) is successfully realized that can harvest sporadic mechanical energy, convert it to electrical energy, and simultaneously store power. Initially, chemically processed multimetallic oxide, namely, copper cobalt nickel oxide (CuCoNiO4) is amalgamated within the poly(vinylidene fluoride) (PVDF) framework in different wt % to realize high-performance PNGs. The combination of CuCoNiO4 as filler creates a notable electroactive phase inside the PVDF matrix, and the composite realized by combining 1 wt % CuCoNiO4 with PVDF, coined as PNCU 1, exhibits the highest electroactive phase (>86%). Under periodic hammering (∼100 kPa), PNGs fabricated with this optimized composite film deliver an instantaneous voltage of ∼67.9 V and a current of ∼4.15 μA. Furthermore, PNG 1 is ingeniously integrated into a supercapacitor to construct PSCFS, using PNCU 1 as a separator and CuCoNiO4 nanowires on carbon cloth (CC) as the positive and negative electrodes. The self-charging behavior of the rectifier-free storage device was established under bending deformation. The PSCFS device exhibits ∼845 mV from its initial open-circuit potential ∼35 mV in ∼220 s under periodic bending of 180° at a frequency of 1 Hz. The PSCFS can power up various portable electronic appliances such as calculators, watches, and LEDs. This work offers a high-performance, self-powered device that can be used to replace bulky batteries in everyday electronic devices by harnessing mechanical energy, converting mechanical energy from its environment into electrical energy

    Self-Charging Piezo-Supercapacitor: One-Step Mechanical Energy Conversion and Storage

    No full text
    With the contemplations of ecological and environmental issues related to energy harvesting, piezoelectric nanogenerators (PNGs) may be an accessible, sustainable, and abundant elective wellspring of energy in the future. The PNGs’ power output, however, is dependent on the mechanical energy input, which will be intermittent if the mechanical energy is not continuous. This is a fatal flaw for electronics that need continuous power. Here, a self-charging flexible supercapacitor (PSCFS) is successfully realized that can harvest sporadic mechanical energy, convert it to electrical energy, and simultaneously store power. Initially, chemically processed multimetallic oxide, namely, copper cobalt nickel oxide (CuCoNiO4) is amalgamated within the poly(vinylidene fluoride) (PVDF) framework in different wt % to realize high-performance PNGs. The combination of CuCoNiO4 as filler creates a notable electroactive phase inside the PVDF matrix, and the composite realized by combining 1 wt % CuCoNiO4 with PVDF, coined as PNCU 1, exhibits the highest electroactive phase (>86%). Under periodic hammering (∼100 kPa), PNGs fabricated with this optimized composite film deliver an instantaneous voltage of ∼67.9 V and a current of ∼4.15 μA. Furthermore, PNG 1 is ingeniously integrated into a supercapacitor to construct PSCFS, using PNCU 1 as a separator and CuCoNiO4 nanowires on carbon cloth (CC) as the positive and negative electrodes. The self-charging behavior of the rectifier-free storage device was established under bending deformation. The PSCFS device exhibits ∼845 mV from its initial open-circuit potential ∼35 mV in ∼220 s under periodic bending of 180° at a frequency of 1 Hz. The PSCFS can power up various portable electronic appliances such as calculators, watches, and LEDs. This work offers a high-performance, self-powered device that can be used to replace bulky batteries in everyday electronic devices by harnessing mechanical energy, converting mechanical energy from its environment into electrical energy

    Maurer's clefts of are secretory organelles that concentrate virulence protein reporters for delivery to the host erythrocyte-7

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Maurer's clefts of are secretory organelles that concentrate virulence protein reporters for delivery to the host erythrocyte"</p><p></p><p>Blood 2009;111(4):2418-2426.</p><p>Published online 15 Feb 2009</p><p>PMCID:PMC2234068.</p><p>© 2008 by The American Society of Hematology</p>tanolysin (top) or saponin (bottom). Panels of fluorescent images show infected erythrocyte expressing HT-GFP, permeabilized with tetanolysin (top) or saponin (bottom), and probed with antibodies to GFP (green) and PfStomatin (red). Respective merged images are also shown. Dotted lines indicate erythrocyte periphery. Arrows show intraerythrocytic clefts. (B) 0° projections of an rHT-GFP–loaded erythrocyte ghost infected with 3D7 (top) or a mock-loaded erythrocyte ghost infected with transgenic parasite expressing HT-GFP (bottom). Empty arrowhead, cleft structure not labeled with intraerythrocytic rHT-GFP; solid arrowhead, GFP labeled cleft. (C) Cells in panel B fixed, permeabilized, and probed with antibodies to GFP (green) and resident cleft protein PfSBP1 (red). Arrows show clefts. (D) Immunoelectron microscopy of cells in panel B showing distribution of GFP associated with Maurer's clefts (MC). Bar indicates 500 nm. (E) Bar graph showing the percentage colocalization between GFP and Maurer's cleft in indicated samples by fluorescence microscopy. (F) Quantitation for the number of gold particles (measuring GFP) associated with clefts by immunoelectron microscopy over 20 infected erythrocytes. In all fluorescence micrographs: p, parasite (nucleus stained with Hoechst 33342; blue); ec, erythrocyte cytosol; bar, 2 μm

    Maurer's clefts of are secretory organelles that concentrate virulence protein reporters for delivery to the host erythrocyte-3

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Maurer's clefts of are secretory organelles that concentrate virulence protein reporters for delivery to the host erythrocyte"</p><p></p><p>Blood 2009;111(4):2418-2426.</p><p>Published online 15 Feb 2009</p><p>PMCID:PMC2234068.</p><p>© 2008 by The American Society of Hematology</p>spectrin after addition of trypsin to cells where the infected erythrocyte membrane was permeabilized with tetanolysin (lanes 2 and 6). Saponin (which additionally permeabilizes PVM and clefts, lanes 4 and 8) renders GFP susceptible to protease. *, trypsin digested GFP product of 25-kDa. Molecular mass markers are expressed in kilodaltons (kDa). (B) Single optical sections of ghosts resealed with Alexa Fluor 594 anti-GFP antibodies infected with parasites expressing HT-GFPmyc (top panel) or Δ-GFPmyc (bottom panel). Cells were viewed live using optics for GFP (green), Alexa Fluor 594/Rhodamine (red), and the merged image is shown in the right panel. Arrows, GFP labeled clefts not labeled with anti-GFP Alexa Fluor 594 conjugate. (C) Immunofluorescence assay of resealed ghosts infected with parasites expressing HT-GFPmyc (top panel) or Δ-GFPmyc (bottom panel) permeabilized with saponin and treated with anti-GFP Alexa Fluor 594-conjugated antibodies. Images under GFP (green) and Alexa 594 (red) optics and their respective merge are shown. Arrowhead, region of colocalization (in yellow) between GFP and Alexa 594. In all cells, the parasite (p) nuclei were stained with Hoechst 33342 (blue); bar, 2 μm. Schematic representation of the construct is indicated above with ER-type signal sequence (red), sequence containing HT signal (blue) or its replacement (filled triangle in black) fused to GFP (green), transmembrane region (black), and myc (orange)

    Maurer's clefts of are secretory organelles that concentrate virulence protein reporters for delivery to the host erythrocyte-5

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Maurer's clefts of are secretory organelles that concentrate virulence protein reporters for delivery to the host erythrocyte"</p><p></p><p>Blood 2009;111(4):2418-2426.</p><p>Published online 15 Feb 2009</p><p>PMCID:PMC2234068.</p><p>© 2008 by The American Society of Hematology</p>quences containing DnaJ region (orange) with the characteristic HPD (green) motif. Further downstream region include a glycine/phenylalanine-rich stretch and C-terminal substrate-binding domain (underlined). Sequences in blue indicate region deleted in parasite line generated by single crossover recombination as shown in panels D-F. (B) Western blot, using anti-PFE0055c antibodies, detecting the presence of a 42-kDa protein in infected erythrocyte (arrowhead, lane 2) but not uninfected erythrocyte (lane 1). (C) Single optical section of a trophozoite-infected erythrocyte fixed and probed with peptide antibodies to PFE0055c (green) and the cleft protein SBP1 (red). Arrow in merge image shows proximal location of PFE0055c to clefts. (D) Strategy for deletion in the C-terminal substrate-binding region of PFE0055c by single crossover recombination with the chromosomal copy of parasites were transfected with plasmids containing an in-frame fusion of the neomycin resistance gene (, green) to an internal fragment of (orange) without sequences encoding for C-terminal substrate-binding domain. Only chromosomal integration of the vector by single crossover with the native (pink) drives expression under the control of promoter (, thus conferring resistance of antibiotic G418. (E) PCR-based detection for the loss of chromosomal copy of . Positions for primer pairs used for amplification analyses of single crossover recombination are highlighted in panel D. (F) Western blot analysis showing the detection of PFE0055c-NPT fusion protein of 45-kDa in transfected line (arrowhead, lane 1) but in not parental line (lane 2) using antibodies to NPT (top). Parasite protein PfFKBP serves as a loading control (bottom). (G) 0° projection of live infected erythrocyte expressing HT-GFPmyc in 3D7 strain with chromosomal deletion of viewed under GFP optics and merged with bright field. Arrow indicates that the export of HT-GFPmyc to cleft is not altered by truncation in PFE0055c. Parasite nucleus (p) in all cases is stained with Hoechst 33342 (blue). Bar represents 2 μm

    Positional Equivalence of HT Motifs in <i>Phytophthora</i> and P. falciparum

    No full text
    <p>Histograms plotting the lengths of the upstream regions of proteins in the HT secretomes of P. ramorum (i, 147 sequences), P. sojae (ii, 176 sequences), and P. falciparum (iii, 112 sequences). Sequence distribution data from P. infestans is not shown because the complete sequencing of this genome is still under way.</p
    corecore