1,914 research outputs found
A Spin-Statistics Theorem for Certain Topological Geons
We review the mechanism in quantum gravity whereby topological geons,
particles made from non-trivial spatial topology, are endowed with nontrivial
spin and statistics. In a theory without topology change there is no
obstruction to ``anomalous'' spin-statistics pairings for geons. However, in a
sum-over-histories formulation including topology change, we show that
non-chiral abelian geons do satisfy a spin-statistics correlation if they are
described by a wave function which is given by a functional integral over
metrics on a particular four-manifold. This manifold describes a topology
changing process which creates a pair of geons from .Comment: 21 pages, Plain TeX with harvmac, 3 figures included via eps
Large Fluctuations in the Horizon Area and what they can tell us about Entropy and Quantum Gravity
We evoke situations where large fluctuations in the entropy are induced, our
main example being a spacetime containing a potential black hole whose
formation depends on the outcome of a quantum mechanical event. We argue that
the teleological character of the event horizon implies that the consequent
entropy fluctuations must be taken seriously in any interpretation of the
quantal formalism. We then indicate how the entropy can be well defined despite
the teleological character of the horizon, and we argue that this is possible
only in the context of a spacetime or ``histories'' formulation of quantum
gravity, as opposed to a canonical one, concluding that only a spacetime
formulation has the potential to compute --- from first principles and in the
general case --- the entropy of a black hole. From the entropy fluctuations in
a related example, we also derive a condition governing the form taken by the
entropy, when it is expressed as a function of the quantal density-operator.Comment: 35 pages, plain Tex, needs mathmacros.tex and msmacros.te
The Random Walk in Generalized Quantum Theory
One can view quantum mechanics as a generalization of classical probability
theory that provides for pairwise interference among alternatives. Adopting
this perspective, we ``quantize'' the classical random walk by finding, subject
to a certain condition of ``strong positivity'', the most general Markovian,
translationally invariant ``decoherence functional'' with nearest neighbor
transitions.Comment: 25 pages, no figure
Energy extremality in the presence of a black hole
We derive the so-called first law of black hole mechanics for variations
about stationary black hole solutions to the Einstein--Maxwell equations in the
absence of sources. That is, we prove that where the black hole parameters and denote mass, surface gravity, horizon area, angular velocity of the
horizon, angular momentum, electric potential of the horizon and charge
respectively. The unvaried fields are those of a stationary, charged, rotating
black hole and the variation is to an arbitrary `nearby' black hole which is
not necessarily stationary. Our approach is 4-dimensional in spirit and uses
techniques involving Action variations and Noether operators. We show that the
above formula holds on any asymptotically flat spatial 3-slice which extends
from an arbitrary cross-section of the (future) horizon to spatial
infinity.(Thus, the existence of a bifurcation surface is irrelevant to our
demonstration. On the other hand, the derivation assumes without proof that the
horizon possesses at least one of the following two (related)properties: ()
it cannot be destroyed by arbitrarily small perturbations of the metric and
other fields which may be present, () the expansion of the null geodesic
generators of the perturbed horizon goes to zero in the distant future.)Comment: 30 pages, latex fil
Energy-momentum diffusion from spacetime discreteness
We study potentially observable consequences of spatiotemporal discreteness
for the motion of massive and massless particles. First we describe some simple
intrinsic models for the motion of a massive point particle in a fixed causal
set background. At large scales, the microscopic swerves induced by the
underlying atomicity manifest themselves as a Lorentz invariant diffusion in
energy-momentum governed by a single phenomenological parameter, and we derive
in full the corresponding diffusion equation. Inspired by the simplicity of the
result, we then derive the most general Lorentz invariant diffusion equation
for a massless particle, which turns out to contain two phenomenological
parameters describing, respectively, diffusion and drift in the particle's
energy. The particles do not leave the light cone however: their worldlines
continue to be null geodesics. Finally, we deduce bounds on the drift and
diffusion constants for photons from the blackbody nature of the spectrum of
the cosmic microwave background radiation.Comment: 13 pages, 4 figures, corrected minor typos and updated to match
published versio
Discreteness and the transmission of light from distant sources
We model the classical transmission of a massless scalar field from a source
to a detector on a background causal set. The predictions do not differ
significantly from those of the continuum. Thus, introducing an intrinsic
inexactitude to lengths and durations - or more specifically, replacing the
Lorentzian manifold with an underlying discrete structure - need not disrupt
the usual dynamics of propagation.Comment: 16 pages, 1 figure. Version 2: reference adde
The Universe and The Quantum Computer
It is first pointed out that there is a common mathematical model for the
universe and the quantum computer. The former is called the histories approach
to quantum mechanics and the latter is called measurement based quantum
computation. Although a rigorous concrete model for the universe has not been
completed, a quantum measure and integration theory has been developed which
may be useful for future progress. In this work we show that the quantum
integral is the unique functional satisfying certain basic physical and
mathematical principles. Since the set of paths (or trajectories) for a quantum
computer is finite, this theory is easier to treat and more developed. We
observe that the sum of the quantum measures of the paths is unity and the
total interference vanishes. Thus, constructive interference is always balanced
by an equal amount of destructive interference. As an example we consider a
simplified two-slit experimentComment: 15 pages, IQSA 2010 proceeding
A Causal Order for Spacetimes with Lorentzian Metrics: Proof of Compactness of the Space of Causal Curves
We recast the tools of ``global causal analysis'' in accord with an approach
to the subject animated by two distinctive features: a thoroughgoing reliance
on order-theoretic concepts, and a utilization of the Vietoris topology for the
space of closed subsets of a compact set. We are led to work with a new causal
relation which we call , and in terms of it we formulate extended
definitions of concepts like causal curve and global hyperbolicity. In
particular we prove that, in a spacetime \M which is free of causal cycles,
one may define a causal curve simply as a compact connected subset of \M
which is linearly ordered by . Our definitions all make sense for
arbitrary metrics (and even for certain metrics which fail to be
invertible in places). Using this feature, we prove for a general metric,
the familiar theorem that the space of causal curves between any two compact
subsets of a globally hyperbolic spacetime is compact. We feel that our
approach, in addition to yielding a more general theorem, simplifies and
clarifies the reasoning involved. Our results have application in a recent
positive energy theorem, and may also prove useful in the study of topology
change. We have tried to make our treatment self-contained by including proofs
of all the facts we use which are not widely available in reference works on
topology and differential geometry.Comment: Two small revisions to accomodate errors brought to our attention by
R.S. Garcia. No change to chief results. 33 page
- …