70 research outputs found
Volumetric growth rates of meningioma and its correlation with histological diagnosis and clinical outcome: a systematic review.
INTRODUCTION: Tumour growth has been used to successfully predict progression-free survival in low-grade glioma. This systematic review sought to establish the evidence base regarding the correlation of volumetric growth rates with histological diagnosis and potential to predict clinical outcome in patients with meningioma. METHODS: This systematic review was conducted according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Databases were searched for full text English articles analysing volumetric growth rates in patients with a meningioma. RESULTS: Four retrospective cohort studies were accepted, demonstrating limited evidence of significantly different tumour doubling rates and shapes of growth curves between benign and atypical meningiomas. Heterogeneity of patient characteristics and timing of volumetric assessment, both pre- and post-operatively, limited pooled analysis of the data. No studies performed statistical analysis to demonstrate the clinical utility of growth rates in predicting clinical outcome. CONCLUSION: This systematic review provides limited evidence in support of the use of volumetric growth rates in meningioma to predict histological diagnosis and clinical outcome to guide future monitoring and treatment
Removal of nutrients and heavy metals from domestic and industry using botryococcus sp.
Microphytes or microalgae are the most basic food source of many types of organisms on earth and blooms during the presence of dissolved inorganic phosphorus. Wastewater is a body of water that is dangerous to organic life forms when consumed or used. It contains many pollutants that can cause health problems and also affect the ecosystem of an environment. This study aims to improve the water quality of wastewaters using phycoremediation process. The objectives of this study are to determine the growth of Botryococcus sp. in different types of wastewater in terms of resistance and survival of Botryococcus sp. in phycoremediation performance, to measure the environmental factor effecting the growth of Botryococcus sp. of phycoremediation process, to optimize the physiochemical and heavy metal removal in different types of wastewaters and to evaluate the effectiveness of Botryococcus sp. to remove the pollutants in wastewaters. Phycoremediation or bioremediation process is using macroalgae or microalgae for removing pollutants, nutrients, xenobiotics and heavy metals from wastewater. This research was done by collecting microalgae sample, isolating and culturing the required Botryococcus sp. Growth optimization and followed by phycoremediation process is done to remove unwanted elements from wastewaters. The optimum growth rate of algae is achieved when salinity is at 0M, temperature at 330C, photoperiod at 12:12 and light intensity of 18000 Lux. Result shows that the highest nitrate removal percentage occurs in semiconductor (100%), followed by palm oil mill effluent (97.29%), textile wastewater (98.04%) and domestic wastewater (85.43%). Total Phosphorus removal indicates the highest percentage for domestic wastewater (100%), palm oil effluent (99.2%), textile wastewater (98.44%) and semiconductor (50.39%). From this research, it is found that the best overall removal of physiochemical and heavy metal content occurs in palm oil mill effluent followed by domestic wastewater, semiconductor wastewater and textile wastewater
In Vitro Growth of Human Keratinocytes and Oral Cancer Cells into Microtissues: An Aerosol-Based Microencapsulation Technique
Cells encapsulation is a micro-technology widely applied in cell and tissue research, tissue
transplantation, and regenerative medicine. In this paper, we proposed a growth of microtissue model
for the human keratinocytes (HaCaT) cell line and an oral squamous cell carcinoma (OSCC) cell line
(ORL-48) based on a simple aerosol microencapsulation technique. At an extrusion rate of 20 �L/min
and air flow rate of 0.3 L/min programmed in the aerosol system, HaCaT and ORL-48 cells in alginate
microcapsules were encapsulated in microcapsules with a diameter ranging from 200 to 300 �m.
Both cell lines were successfully grown into microtissues in the microcapsules of alginate within
16 days of culture. The microtissues were characterized by using a live/dead cell viability assay,
field emission-scanning electron microscopy (FE-SEM), fluorescence staining, and cell re-plating
experiments. The microtissues of both cell types were viable after being extracted from the alginate
membrane using alginate lyase. However, the microtissues of HaCaT and ORL-48 demonstrated
differences in both nucleus size and morphology. The microtissues with re-associated cells in
spheroids are potentially useful as a cell model for pharmacological studies
In vitro growth of human keratinocytes and oral cancer cells into microtissues: an aerosol-based microencapsulation technique
Cells encapsulation is a micro-technology widely applied in cell and tissue research, tissue transplantation, and regenerative medicine. In this paper, we proposed a growth of microtissue model for the human keratinocytes (HaCaT) cell line and an oral squamous cell carcinoma (OSCC) cell line (ORL-48) based on a simple aerosol microencapsulation technique. At an extrusion rate of 20 µL/min and air flow rate of 0.3 L/min programmed in the aerosol system, HaCaT and ORL-48 cells in alginate microcapsules were encapsulated in microcapsules with a diameter ranging from 200 to 300 µm. Both cell lines were successfully grown into microtissues in the microcapsules of alginate within 16 days of culture. The microtissues were characterized by using a live/dead cell viability assay, field emission-scanning electron microscopy (FE-SEM), fluorescence staining, and cell re-plating experiments. The microtissues of both cell types were viable after being extracted from the alginate membrane using alginate lyase. However, the microtissues of HaCaT and ORL-48 demonstrated differences in both nucleus size and morphology. The microtissues with re-associated cells in spheroids are potentially useful as a cell model for pharmacological studies
Revealing the potential role of hsa-miR-663a in modulating the PI3K-Akt signaling pathway via miRNA microarray in spinal muscular atrophy patient fibroblast-derived iPSCs
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder due to deletion or mutation of survival motor neuron 1 (SMN1) gene. Although survival motor neuron 2 (SMN2) gene is still present in SMA patients, the production of full-length survival motor neuron (SMN) protein is insufficient owing to missing or mutated SMN1. No current disease-modifying therapies can cure SMA. The aim of this study was to explore microRNA (miRNA)-based therapies that may serve as a potential target for therapeutic intervention in delaying SMA progression or as treatment. The study screened for potentially dysregulated miRNAs in SMA fibroblast-derived iPSCs using miRNA microarray. Results from the miRNA microarray were validated using quantitative reverse transcription polymerase chain reaction. Bioinformatics analysis using various databases was performed to predict the potential putative gene targeted by hsa-miR-663a. The findings showed differential expression of hsa-miR-663a in SMA patients in relation to a healthy control. Bioinformatics analysis identified GNG7, IGF2, and TNN genes that were targeted by hsa-miR-663a to be involved in the PI3K-AKT pathway, which may be associated with disease progression in SMA. Thus, this study suggests the potential role of hsa-miR-663a as therapeutic target for the treatment of SMA patients in the near future. © 2024 The Author(s)
Cerebrospinal Fluid Diversion for Refractory Intracranial Hypertension in Traumatic Brain Injury:A Single Center Experience
Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study
Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world.
Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231.
Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001).
Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
- …