1,403 research outputs found
Memory-like differentiation enhances NK cell responses against colorectal cancer
Metastatic (m) colorectal cancer (CRC) is an incurable disease with a poor prognosis and thus remains an unmet clinical need. Immune checkpoint blockade (ICB)-based immunotherapy is effective for mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) mCRC patients, but it does not benefit the majority of mCRC patients. NK cells are innate lymphoid cells with potent effector responses against a variety of tumor cells but are frequently dysfunctional in cancer patients. Memory-like (ML) NK cells differentiated after IL-12/IL-15/IL-18 activation overcome many challenges to effective NK cell anti-tumor responses, exhibiting enhanced recognition, function, and in vivo persistence. We hypothesized that ML differentiation enhances the NK cell responses to CRC. Compared to conventional (c) NK cells, ML NK cells displayed increased IFN-γ production against both CRC cell lines and primary patient-derived CRC spheroids. ML NK cells also exhibited improved killing of CRC target cells in vitro in short-term and sustained cytotoxicity assays, as well as in vivo in NSG mice. Mechanistically, enhanced ML NK cell responses were dependent on the activating receptor NKG2D as its blockade significantly decreased ML NK cell functions. Compared to cNK cells, ML NK cells exhibited greater antibody-dependent cytotoxicity when targeted against CRC by cetuximab. ML NK cells from healthy donors and mCRC patients exhibited increased anti-CRC responses. Collectively, our findings demonstrate that ML NK cells exhibit enhanced responses against CRC targets, warranting further investigation in clinical trials for mCRC patients, including those who have failed ICB
Observation of Exclusive Gamma Gamma Production in p pbar Collisions at sqrt{s}=1.96 TeV
We have observed exclusive \gamma\gamma production in proton-antiproton
collisions at \sqrt{s}=1.96 TeV, using data from 1.11 \pm 0.07 fb^{-1}
integrated luminosity taken by the Run II Collider Detector at Fermilab. We
selected events with two electromagnetic showers, each with transverse energy
E_T > 2.5 GeV and pseudorapidity |\eta| < 1.0, with no other particles detected
in -7.4 < \eta < +7.4. The two showers have similar E_T and azimuthal angle
separation \Delta\phi \sim \pi; 34 events have two charged particle tracks,
consistent with the QED process p \bar{p} to p + e^+e^- + \bar{p} by two-photon
exchange, while 43 events have no charged tracks. The number of these events
that are exclusive \pi^0\pi^0 is consistent with zero and is < 15 at 95% C.L.
The cross section for p\bar{p} to p+\gamma\gamma+\bar{p} with |\eta(\gamma)| <
1.0 and E_T(\gamma) > 2.5$ GeV is
2.48^{+0.40}_{-0.35}(stat)^{+0.40}_{-0.51}(syst) pb.Comment: 7 pages, 4 figure
Combined search for the standard model Higgs boson decaying to a bb pair using the full CDF data set
We combine the results of searches for the standard model Higgs boson based
on the full CDF Run II data set obtained from sqrt(s) = 1.96 TeV p-pbar
collisions at the Fermilab Tevatron corresponding to an integrated luminosity
of 9.45/fb. The searches are conducted for Higgs bosons that are produced in
association with a W or Z boson, have masses in the range 90-150 GeV/c^2, and
decay into bb pairs. An excess of data is present that is inconsistent with the
background prediction at the level of 2.5 standard deviations (the most
significant local excess is 2.7 standard deviations).Comment: To be published in Phys. Rev. Lett (v2 contains minor updates based
on comments from PRL
Precise measurement of the W-boson mass with the CDF II detector
We have measured the W-boson mass MW using data corresponding to 2.2/fb of
integrated luminosity collected in proton-antiproton collisions at 1.96 TeV
with the CDF II detector at the Fermilab Tevatron collider. Samples consisting
of 470126 W->enu candidates and 624708 W->munu candidates yield the measurement
MW = 80387 +- 12 (stat) +- 15 (syst) = 80387 +- 19 MeV. This is the most
precise measurement of the W-boson mass to date and significantly exceeds the
precision of all previous measurements combined
Measurement of the Cross Section and Triple Gauge Couplings in Collisions at TeV
This Letter describes the current most precise measurement of the
production cross section as well as limits on anomalous couplings at a
center-of-mass energy of 1.96 TeV in proton-antiproton collisions for the
Collider Detector at Fermilab (CDF). candidates are reconstructed from
decays containing three charged leptons and missing energy from a neutrino,
where the charged leptons are either electrons or muons. Using data collected
by the CDF II detector (7.1 fb of integrated luminosity), 63 candidate
events are observed with the expected background contributing events.
The measured total cross section pb is in good
agreement with the standard model prediction of . The same sample
is used to set limits on anomalous couplings.Comment: Resubmission to PRD-RC after acceptance (27 July 2012
Search for Neutral Higgs Bosons in Events with Multiple Bottom Quarks at the Tevatron
The combination of searches performed by the CDF and D0 collaborations at the
Fermilab Tevatron Collider for neutral Higgs bosons produced in association
with b quarks is reported. The data, corresponding to 2.6 fb-1 of integrated
luminosity at CDF and 5.2 fb-1 at D0, have been collected in final states
containing three or more b jets. Upper limits are set on the cross section
multiplied by the branching ratio varying between 44 pb and 0.7 pb in the Higgs
boson mass range 90 to 300 GeV, assuming production of a narrow scalar boson.
Significant enhancements to the production of Higgs bosons can be found in
theories beyond the standard model, for example in supersymmetry. The results
are interpreted as upper limits in the parameter space of the minimal
supersymmetric standard model in a benchmark scenario favoring this decay mode.Comment: 10 pages, 2 figure
Measurement of CP-violation asymmetries in D0 to Ks pi+ pi-
We report a measurement of time-integrated CP-violation asymmetries in the
resonant substructure of the three-body decay D0 to Ks pi+ pi- using CDF II
data corresponding to 6.0 invfb of integrated luminosity from Tevatron ppbar
collisions at sqrt(s) = 1.96 TeV. The charm mesons used in this analysis come
from D*+(2010) to D0 pi+ and D*-(2010) to D0bar pi-, where the production
flavor of the charm meson is determined by the charge of the accompanying pion.
We apply a Dalitz-amplitude analysis for the description of the dynamic decay
structure and use two complementary approaches, namely a full Dalitz-plot fit
employing the isobar model for the contributing resonances and a
model-independent bin-by-bin comparison of the D0 and D0bar Dalitz plots. We
find no CP-violation effects and measure an asymmetry of ACP = (-0.05 +- 0.57
(stat) +- 0.54 (syst))% for the overall integrated CP-violation asymmetry,
consistent with the standard model prediction.Comment: 15 page
- …