49 research outputs found
Effects of the combination of loxoprofen sodium and sodium hyaluronate on osteoarthritis and knee function
Purpose: To determine the treatment efficacy of the combination of loxoprofen sodium and sodium hyaluronate in osteoarthritis (OA), and its role in knee joint function.
Methods: 98 patients with OA admitted to Guang'an People's Hospital, Sichuan, China were allocated into control group (CNG, given loxoprofen sodium n, = 51) and study group (SG, given loxoprofen sodium and sodium hyaluronate, n = 47). Both groups were compared in terms of the levels of inflammatory factor, Lysholm, VAS, WOMAC scores, treatment effects, serum MDA, NO, SOD levels, adverse effects, and blood rheology indices.
Results: The study group had higher SOD levels, and higher BALP and BGP than CNG (p < 0.05). SG had lower TRACP-5b and blood rheological indices than CNG (p < 0.05). The difference in the incidence of adverse reactions was not statistically significant between the two groups (p > 0.05).
Conclusion: The combination of loxoprofen sodium and sodium hyaluronate effectively improves the function and blood rheological indices of knee joints. It reduces the occurrence of adverse reactions and the level of pain in patients with OA, and improves OA prognosis. However further clinical trials are required prior to application in clinical practice
Role of Glycine max in improving drought tolerance in Zanthoxylum bungeanum
Intercropping may improve community stability and yield under climate change. Here, we set up a field experiment to evaluate the advantages of cultivating Z anthoxylum bungeanum with Capsicum annum, and Z. bungeanum with Glycine max as intercrops, compared with cultivating Z. bungeanum in monoculture. Effects of extreme drought stress conditions on morphological, physiological, and biochemical traits of the three crop species cultivated in the three contrasting planting systems were compared. Results showed that extreme drought conditions induced negative impacts on Z. bungeanum grown in monoculture, due to reduced growth and metabolic impairment. However, limited stomatal conductance, reduced transpiration rate (Tr), and increased water use efficiency, carotenoid content, catalase activity, and accumulation of soluble sugars in Z. bungeanum indicated its adaptive strategies for tolerance of extreme drought stress conditions. Compared with cultivation in monoculture, intercropping with C. annum had positive effects on Z. bungeanum under extreme drought stress conditions, as a result of improved crown diameter, leaf relative water content (LRWC), net photosynthetic rate, and proline content, while intercropping with G. max under extreme drought stress conditions increased net CO2 assimilation rates, LRWC, Tr , and superoxide dismutase (SOD) activity. In conclusion, Z. bungeanum has an effective defense mechanism for extreme drought stress tolerance. Intercropping with G. max enhanced this tolerance potential primarily through its physio-biochemical adjustments, rather than as a result of nitrogen fixation by G. max.Fil: Li, Zilong. Chinese Academy of Sciences; RepĂșblica de China. Guizhou University of Traditional Chinese Medicine; ChinaFil: Tariq, Akash. Chinese Academy of Sciences; RepĂșblica de China. Cele National Station of Observation and Research for Desert-Grassland Ecosystems; ChinaFil: Pan, Kaiwen. Chinese Academy of Sciences; RepĂșblica de ChinaFil: Graciano, Corina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de FisiologĂa Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de FisiologĂa Vegetal; ArgentinaFil: Sun, Feng. Chinese Academy of Sciences; RepĂșblica de ChinaFil: Song, Dagang. Biogas Institute of Ministry of Agriculture and Rural Affairs; ChinaFil: Olatunji, Olusanya Abiodun. Fujian Normal University; Chin
Prediction of heat accumulation of symmetrical rubber buffer on track-type bulldozer
Symmetrical rubber buffers mounted on a tracktype bulldozer are used in passive damping for the reduction of vibrations. As heat accumulation due to hysteresis may occur in continuous operation distributions of three typical cases were evaluated by FEM. The simulation result shows that hysteresisârelated heat accumulation occurring near the contact region of the rubber pad remains unchanged in different cases. The maximum temperature in the case of earthmoving somewhat exceeds the range. The value of cutting and bulldozing is below the range. The value of loosening obviously exceeds the range. The great conductivity gap of heat flux between steel and rubber, which caused the most heat, was dissipated through the steel plate. Superficial temperatures were measured with a non-contact thermometer for the convenience of calculation that revealed a fair agreement between simulation and measurement in the case of earthmoving and cutting andbulldozing case. A lot of hysteresis-related heat produced due to excessive load caused a large error
Phosphorous fertilization alleviates drought effects on Alnus cremastogyne by regulating its antioxidant and osmotic potential
Alnus cremastogyne, a broad-leaved tree endemic to south-western China, has both commercial and restoration importance. However, little is known of its morphological, physiological and biochemical responses to drought and phosphorous (P) application. A randomized experimental design was used to investigate how drought affected A. cremastogyne seedlings, and the role that P applications play in these responses. Drought had significant negative effects on A. cremastogyne growth and metabolism, as revealed by reduced biomass (leaf, shoot and root), leaf area, stem diameter, plant height, photosynthetic rate, leaf relative water content, and photosynthetic pigments, and a weakened antioxidative defence mechanism and high lipid peroxidation level. However, the reduced leaf area and enhanced osmolyte (proline and soluble sugars) accumulation suggests drought avoidance and tolerance strategies in this tree. Applying P significantly improved the leaf relative water content and photosynthetic rate of drought-stressed seedlings, which may reflect increased anti-oxidative enzyme (superoxide dismutase, catalase and peroxidase) activities, osmolyte accumulation, soluble proteins, and decreased lipid peroxidation levels. However, P had only a slight or negligible effect on the well-watered plants. A. cremastogyne is sensitive to drought stress, but P facilitates and improves its metabolism primarily via biochemical and physiological rather than morphological adjustments, regardless of water availability.Instituto de FisiologĂa Vegeta
Phosphorous fertilization alleviates drought effects on Alnus cremastogyne by regulating its antioxidant and osmotic potential
Alnus cremastogyne, a broad-leaved tree endemic to south-western China, has both commercial and restoration importance. However, little is known of its morphological, physiological and biochemical responses to drought and phosphorous (P) application. A randomized experimental design was used to investigate how drought affected A. cremastogyne seedlings, and the role that P applications play in these responses. Drought had significant negative effects on A. cremastogyne growth and metabolism, as revealed by reduced biomass (leaf, shoot and root), leaf area, stem diameter, plant height, photosynthetic rate, leaf relative water content, and photosynthetic pigments, and a weakened antioxidative defence mechanism and high lipid peroxidation level. However, the reduced leaf area and enhanced osmolyte (proline and soluble sugars) accumulation suggests drought avoidance and tolerance strategies in this tree. Applying P significantly improved the leaf relative water content and photosynthetic rate of drought-stressed seedlings, which may reflect increased anti-oxidative enzyme (superoxide dismutase, catalase and peroxidase) activities, osmolyte accumulation, soluble proteins, and decreased lipid peroxidation levels. However, P had only a slight or negligible effect on the well-watered plants. A. cremastogyne is sensitive to drought stress, but P facilitates and improves its metabolism primarily via biochemical and physiological rather than morphological adjustments, regardless of water availability.Instituto de FisiologĂa Vegeta
Phosphorous application improves drought tolerance of phoebe zhennan
Phoebe zhennan (Gold Phoebe) is a threatened tree species in China and a valuable and important source of wood and bioactive compounds used in medicine. Apart from anthropogenic disturbances, several biotic constraints currently restrict its growth and development. However, little attention has been given to building adaptive strategies for its conservation by examining its morphological and physio-biochemical responses to drought stress, and the role of fertilizers on these responses. A randomized experimental design was used to investigate the effects of two levels of irrigation (well-watered and drought-stressed) and phosphorous (P) fertilization treatment (with and without P) to assess the morphological and physio-biochemical responses of P. zhennan seedlings to drought stress. In addition, we evaluated whether P application could mitigate the negative impacts of drought on plant growth and metabolism. Drought stress had a significant negative effect on the growth and metabolic processes of P. zhennan. Despite this, reduced leaf area, limited stomatal conductance, reduced transpiration rate, increased water use efficiency, enhanced antioxidant enzymes activities, and osmolytes accumulation suggested that the species has good adaptive strategies for tolerating drought stress. Application of P had a significant positive effect on root biomass, signifying its improved water extracting capacity from the soil. Moreover, P fertilization significantly increased leaf relative water content, net photosynthetic rate, and maximal quantum efficiency of PSII under drought stress conditions. This may be attributable to several factors, such as enhanced root biomass, decreased malondialdehyde content, and the up-regulation of chloroplast pigments, osmolytes, and nitrogenous compounds. However, P application had only a slight or negligible effect on the growth and metabolism of well-watered plants. In conclusion, P. zhennan has a strong capability for drought resistance, while P application facilitates and improves drought tolerance mostly through physio-biochemical adjustments, regardless of water availability. It is imperative to explore the underlying metabolic mechanisms and effects of different levels of P fertilization on P. zhennan under drought conditions in order to design appropriate conservation and management strategies for this species, which is at risk of extinction.Fil: Tariq, Akash. Chinese Academy of Sciences; RepĂșblica de ChinaFil: Pan, Kaiwen. Chinese Academy of Sciences; RepĂșblica de ChinaFil: Olatunji, Olusanya A.. Chinese Academy of Sciences; RepĂșblica de ChinaFil: Graciano, Corina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de FisiologĂa Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de FisiologĂa Vegetal; ArgentinaFil: Li, Zilong. Chinese Academy of Sciences; RepĂșblica de ChinaFil: Sun, Feng. Chinese Academy of Sciences; RepĂșblica de ChinaFil: Sun, Xiaoming. Chinese Academy of Sciences; RepĂșblica de ChinaFil: Song, Dagang. Chinese Academy of Sciences; RepĂșblica de ChinaFil: Chen, Wenkai. Chinese Academy of Sciences; RepĂșblica de ChinaFil: Zhang, Aiping. Chinese Academy of Sciences; RepĂșblica de ChinaFil: Wu, Xiaogang. Chinese Academy of Sciences; RepĂșblica de ChinaFil: Zhang, Lin. Chinese Academy of Sciences; RepĂșblica de ChinaFil: Mingrui, Deng. Chinese Academy of Sciences; RepĂșblica de ChinaFil: Xiong, Qinli. Chinese Academy of Sciences; RepĂșblica de ChinaFil: Liu, Chenggang. Chinese Academy of Sciences; RepĂșblica de Chin
Effects of contact load and torsion angle on crack propagation behaviors of inclined crossed steel wires during tension-torsion fretting fatigue in acid solution
The hoisting rope in the kilometer-deep coal mine exhibits the tensionâtorsion fretting fatigue behaviors of inclined crossed steel wires in acid solution. Distinct contact load and torsion angles of steel wires in the rope cause different crack propagation behaviors, which greatly affect the fatigue lives of steel wires. Therefore, the effects of contact load and torsion angle on the crack propagation behaviors of inclined crossed steel wires during tensionâtorsion fretting fatigue in acid solution were investigated in the present study. The three-dimensional X-ray tomographic micro-imaging system was used to reveal evolutions of crack profiles and crack propagation depths during the test. The evolution of friction coefficient between steel wires during the test is presented. The three-dimensional white light interference microscope, electrochemical analyzer, and scanning electron microscope were employed to investigate the wear depth profiles, Tafel polarization curves and impedance spectra, and wear scar morphologies, respectively, of steel wires. Effects of contact load and torsion angle on crack propagation behaviors of inclined crossed steel wires during the tests were explored through analyses of friction and wear mechanisms and electrochemical corrosion damage. The results show that as the contact load and torsion angle increase, the crack propagation depth and rate of steel wire both increase and the fatigue life of steel wire decreases. Those are mainly attributed to the increases in the average tangential force between steel wires, wear depth, electrochemical corrosion tendency, and surface damage of steel wire as well as the decrease in corrosion resistance
Fiber Alignment and Liquid Crystal Orientation of Cellulose Nanocrystals in the Electrospun Nanofibrous Mats
Sulfate cellulose
nanocrystal (CNC) dispersions always present
specific self-assembled cholesteric mesophases which is easily affected
by the inherent properties of particle size, surface charge, and repulsion
or affinity interaction, and external field force generated from ionic
potential of added electrolytes, magnetic or electric field, and mechanical
shearing or stretching. Aiming at understanding the liquid crystal
orientation and fiber alignment under high-voltage electric field,
randomly distributed, uniform-aligned, or coreâsheath nanofibrous
mats involving charged CNCs and PVA were electrospun; and among them,
specific straight arrayed fine nanofibers with average diameter of
270 nm were manufactured by using a simple and versatile gap collector.
Moreover, arrayed composite nanofibers regularly aligned along the
vertical direction of gap plates and selectively reflected frequent
and continuous birefringence which was regarded as nematic phases
of CNCs induced by the uniaxial stretching under high-voltage electric
field. As a synergic effect of rigidness of nanocrystals and stretching
orientation of nematic phases, the aligned nanofibrous arrays exhibited
a higher tensile strength and strain than the randomly oriented or
coreâsheath nanofibrous mats at the same loading of CNCs. By
contrast, mesophase transition of CNCs from cholesteric to nematic
occurred in the coaxially spun coreâsheath nanofibers at a
loss of long-ranged chiral twist. Hence, the structure-effect relationship
between liquid crystal orientation of charged nanorods in polymer-based
fine nanofibers and the flexibility or mechanical integrity of the
aligned fiber array will be favorable for strategic development of
functional liquid crystal fabrics
Intermolecular self-assembly of dopamine-conjugated carboxymethylcellulose and carbon nanotubes toward supertough filaments and multifunctional wearables
The utilization of smart textiles, mainly in the form of yarns and wovens, requires high structural toughness and flexibility. To this end, we introduce a strategy based on the intermolecular self-assembly of dopamine-conjugated carboxymethyl cellulose (DA-CMC) with carbon nanotubes (CNT). Upon coagulation in a nonsolvent, the DA-CMC/CNT suspensions readily form composite filaments by the effects of hydrogen bonding, H-pi, anion-pi, and pi-pi interactions, as demonstrated by molecular dynamic simulation. The DA-CMC/CNT filaments display super-toughness (~76.2 MJ mâ3), extensibility (strain to failure of ~14.8% at 90% RH, twice that of dopamine-free analogous systems) and high electrical conductivity. Moreover, the composite filaments form conductive networks that effectively support bending, strain and compression in air or fluid media. As such, they are suitable for application in wearables devices designed for sensing and electrothermal heating. Our proposed, scalable synthesis of multifunctional filaments opens new opportunities given their electroactivity and suitability for human interfacing.Peer reviewe