129 research outputs found

    Martingale Optimal Transport and Robust Hedging in Continuous Time

    Full text link
    The duality between the robust (or equivalently, model independent) hedging of path dependent European options and a martingale optimal transport problem is proved. The financial market is modeled through a risky asset whose price is only assumed to be a continuous function of time. The hedging problem is to construct a minimal super-hedging portfolio that consists of dynamically trading the underlying risky asset and a static position of vanilla options which can be exercised at the given, fixed maturity. The dual is a Monge-Kantorovich type martingale transport problem of maximizing the expected value of the option over all martingale measures that has the given marginal at maturity. In addition to duality, a family of simple, piecewise constant super-replication portfolios that asymptotically achieve the minimal super-replication cost is constructed

    Facelifting in Utility Maximization

    Full text link
    We establish the existence and characterization of a primal and a dual facelift - discontinuity of the value function at the terminal time - for utility-maximization in incomplete semimartingale-driven financial markets. Unlike in the lower- and upper-hedging problems, and somewhat unexpectedly, a facelift turns out to exist in utility-maximization despite strict convexity in the objective function. In addition to discussing our results in their natural, Markovian environment, we also use them to show that the dual optimizer cannot be found in the set of countably-additive (martingale) measures in a wide variety of situations

    Dual formulation of second order target problems

    Full text link
    This paper provides a new formulation of second order stochastic target problems introduced in [SIAM J. Control Optim. 48 (2009) 2344-2365] by modifying the reference probability so as to allow for different scales. This new ingredient enables us to prove a dual formulation of the target problem as the supremum of the solutions of standard backward stochastic differential equations. In particular, in the Markov case, the dual problem is known to be connected to a fully nonlinear, parabolic partial differential equation and this connection can be viewed as a stochastic representation for all nonlinear, scalar, second order, parabolic equations with a convex Hessian dependence.Comment: Published in at http://dx.doi.org/10.1214/12-AAP844 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Homogenization and asymptotics for small transaction costs

    Full text link
    We consider the classical Merton problem of lifetime consumption-portfolio optimization problem with small proportional transaction costs. The first order term in the asymptotic expansion is explicitly calculated through a singular ergodic control problem which can be solved in closed form in the one-dimensional case. Unlike the existing literature, we consider a general utility function and general dynamics for the underlying assets. Our arguments are based on ideas from the homogenization theory and use the convergence tools from the theory of viscosity solutions. The multidimensional case is studied in our accompanying paper using the same approach.Comment: 29 page

    Robust Hedging with Proportional Transaction Costs

    Full text link
    Duality for robust hedging with proportional transaction costs of path dependent European options is obtained in a discrete time financial market with one risky asset. Investor's portfolio consists of a dynamically traded stock and a static position in vanilla options which can be exercised at maturity. Both the stock and the option trading is subject to proportional transaction costs. The main theorem is duality between hedging and a Monge-Kantorovich type optimization problem. In this dual transport problem the optimization is over all the probability measures which satisfy an approximate martingale condition related to consistent price systems in addition to the usual marginal constraints
    corecore