78 research outputs found
A New Heavy Flavor Program for the Future Electron-Ion Collider
The proposed high-energy and high-luminosity Electron-Ion Collider (EIC) will
provide one of the cleanest environments to precisely determine the nuclear
parton distribution functions (nPDFs) in a wide - range. Heavy flavor
production at the EIC provides access to nPDFs in the poorly constrained high
Bjorken- region, allows us to study the quark and gluon fragmentation
processes, and constrains parton energy loss in cold nuclear matter. Scientists
at the Los Alamos National Laboratory are developing a new physics program to
study heavy flavor production, flavor tagged jets, and heavy flavor hadron-jet
correlations in the nucleon/nucleus going direction at the future EIC. The
proposed measurements will provide a unique way to explore the flavor dependent
fragmentation functions and energy loss in a heavy nucleus. They will constrain
the initial-state effects that are critical for the interpretation of previous
and ongoing heavy ion measurements at the Relativistic Heavy Ion Collider and
the Large Hadron Collider. We show an initial conceptual design of the proposed
Forward Silicon Tracking (FST) detector at the EIC, which is essential to carry
out the heavy flavor measurements. We further present initial feasibility
studies/simulations of heavy flavor hadron reconstruction using the proposed
FST.Comment: 6 pages, 5 figures, proceedings for the XLIX International Symposium
on Multiparticle Dynamics (ISMD2019) (9-13 September 2019) conferenc
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
The 2010 Interim Report of the Long-Baseline Neutrino Experiment Collaboration Physics Working Groups
Corresponding author R.J.Wilson ([email protected]); 113 pages, 90 figuresCorresponding author R.J.Wilson ([email protected]); 113 pages, 90 figuresIn early 2010, the Long-Baseline Neutrino Experiment (LBNE) science collaboration initiated a study to investigate the physics potential of the experiment with a broad set of different beam, near- and far-detector configurations. Nine initial topics were identified as scientific areas that motivate construction of a long-baseline neutrino experiment with a very large far detector. We summarize the scientific justification for each topic and the estimated performance for a set of far detector reference configurations. We report also on a study of optimized beam parameters and the physics capability of proposed Near Detector configurations. This document was presented to the collaboration in fall 2010 and updated with minor modifications in early 2011
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figuresMajor update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figuresThe preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess
The 2010 Interim Report of the Long-Baseline Neutrino Experiment Collaboration Physics Working Groups
In early 2010, the Long-Baseline Neutrino Experiment (LBNE) science
collaboration initiated a study to investigate the physics potential of the
experiment with a broad set of different beam, near- and far-detector
configurations. Nine initial topics were identified as scientific areas that
motivate construction of a long-baseline neutrino experiment with a very large
far detector. We summarize the scientific justification for each topic and the
estimated performance for a set of far detector reference configurations. We
report also on a study of optimized beam parameters and the physics capability
of proposed Near Detector configurations. This document was presented to the
collaboration in fall 2010 and updated with minor modifications in early 2011.Comment: Corresponding author R.J.Wilson ([email protected]); 113
pages, 90 figure
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess
Mechanics and Assembly of the Silicon Vertex Detector for the PHENIX Experiment at RHIC
AbstractThe PHENIX experiment at the Relativistic Heavy-Ion Collider explores the phase diagram of strongly interacting matter through collisions of beam of heavy nuclei. A second physics program addresses the spin structure of the nucleon through collisions of beams of polarized protons. The PHENIX apparatus has been particularly designed for lepton-pair measurements and comprises detectors for charged-particle tracking, particle identification, calorimetry and collision centrality monitors. Los mass detector systems and high-rate capability have been central to its concept. Recently a silicon vertex detector has been added to the experiment. It will extend the capabilities of PHENIX towards more refined studies involving heavy flavor physics with direct detection of decays.The presented article addresses technical aspects of the vertex detector's mechanical construction and the assembly of its components. It contains various detailed information and may be of interest to a larger scientific and engineering community in the fields of high –energy and heavy-ion physics
A Proposed Forward Silicon Tracker for the Future Electron-Ion Collider and Associated Physics Studies
Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report (Volume II: DUNE Physics)
- …