174 research outputs found

    Coding for Fast Content Download

    Full text link
    We study the fundamental trade-off between storage and content download time. We show that the download time can be significantly reduced by dividing the content into chunks, encoding it to add redundancy and then distributing it across multiple disks. We determine the download time for two content access models - the fountain and fork-join models that involve simultaneous content access, and individual access from enqueued user requests respectively. For the fountain model we explicitly characterize the download time, while in the fork-join model we derive the upper and lower bounds. Our results show that coding reduces download time, through the diversity of distributing the data across more disks, even for the total storage used.Comment: 8 pages, 6 figures, conferenc

    Effects of the Generation Size and Overlap on Throughput and Complexity in Randomized Linear Network Coding

    Full text link
    To reduce computational complexity and delay in randomized network coded content distribution, and for some other practical reasons, coding is not performed simultaneously over all content blocks, but over much smaller, possibly overlapping subsets of these blocks, known as generations. A penalty of this strategy is throughput reduction. To analyze the throughput loss, we model coding over generations with random generation scheduling as a coupon collector's brotherhood problem. This model enables us to derive the expected number of coded packets needed for successful decoding of the entire content as well as the probability of decoding failure (the latter only when generations do not overlap) and further, to quantify the tradeoff between computational complexity and throughput. Interestingly, with a moderate increase in the generation size, throughput quickly approaches link capacity. Overlaps between generations can further improve throughput substantially for relatively small generation sizes.Comment: To appear in IEEE Transactions on Information Theory Special Issue: Facets of Coding Theory: From Algorithms to Networks, Feb 201

    Efficient Redundancy Techniques for Latency Reduction in Cloud Systems

    Full text link
    In cloud computing systems, assigning a task to multiple servers and waiting for the earliest copy to finish is an effective method to combat the variability in response time of individual servers, and reduce latency. But adding redundancy may result in higher cost of computing resources, as well as an increase in queueing delay due to higher traffic load. This work helps understand when and how redundancy gives a cost-efficient reduction in latency. For a general task service time distribution, we compare different redundancy strategies in terms of the number of redundant tasks, and time when they are issued and canceled. We get the insight that the log-concavity of the task service time creates a dichotomy of when adding redundancy helps. If the service time distribution is log-convex (i.e. log of the tail probability is convex) then adding maximum redundancy reduces both latency and cost. And if it is log-concave (i.e. log of the tail probability is concave), then less redundancy, and early cancellation of redundant tasks is more effective. Using these insights, we design a general redundancy strategy that achieves a good latency-cost trade-off for an arbitrary service time distribution. This work also generalizes and extends some results in the analysis of fork-join queues.Comment: accepted for publication in ACM Transactions on Modeling and Performance Evaluation of Computing System
    • …
    corecore