154 research outputs found
Dark-State Polaritons in Single- and Double- Media
We derive the properties of polaritons in single- and
double- media using a microscopic equation-of-motion technique. In
each case, the polaritonic dispersion relation and composition arise from a
matrix eigenvalue problem for arbitrary control field strengths. We show that
the double- medium can be used to up- or down-convert single photons
while preserving quantum coherence. The existence of a dark-state polariton
protects this single-photon four-wave mixing effect against incoherent decay of
the excited atomic states. The efficiency of this conversion is limited mainly
by the sample size and the lifetime of the metastable state.Comment: 7 pages, 6 figure
Screening effect on the optical absorption in graphene and metallic monolayers
Screening is one of the fundamental concepts in solid state physics. It has a
great impact on the electronic properties of graphene where huge mobilities
were observed in spite of the large concentration of charged impurities. While
static screening has successfully explained DC mobilities, screening properties
can be significantly changed at infrared or optical frequencies. In this paper
we discuss the influence of dynamical screening on the optical absorption of
graphene and other 2D electron systems like metallic monolayers. This research
is motivated by recent experimental results which pointed out that graphene
plasmon linewidths and optical scattering rates can be much larger than
scattering rates determined by DC mobilities. Specifically we discuss a process
where a photon incident on a graphene plane can excite a plasmon by scattering
from an impurity, or surface optical phonon of the substrate.Comment: 19 pages, 2 figure
Quantum Theory of a Resonant Photonic Crystal
We present a quantum model of two-level atoms localized in a 3D lattice,
based on the Hopfield theory of exciton polaritons. In addition to a
polaritonic gap at the exciton energy, a photonic bandgap opens up at the
Brillouin zone boundary. Upon tuning the lattice period or angle of incidence
to match the photonic gap with the exciton energy, one obtains a combined
polaritonic and photonic gap as a generalization of Rabi splitting. For typical
experimental parameters, the size of the combined gap is on the order of 25
cm^{-1}, up to 10^5 times the detuned gap size. The dispersion curve contains a
branch supporting slow-light modes with vanishing exciton probability density.Comment: 4 pages, 3 figure
Migrating Knowledge between Physical Scenarios based on Artificial Neural Networks
Deep learning is known to be data-hungry, which hinders its application in
many areas of science when datasets are small. Here, we propose to use transfer
learning methods to migrate knowledge between different physical scenarios and
significantly improve the prediction accuracy of artificial neural networks
trained on a small dataset. This method can help reduce the demand for
expensive data by making use of additional inexpensive data. First, we
demonstrate that in predicting the transmission from multilayer photonic film,
the relative error rate is reduced by 46.8% (26.5%) when the source data comes
from 10-layer (8-layer) films and the target data comes from 8-layer (10-layer)
films. Second, we show that the relative error rate is decreased by 22% when
knowledge is transferred between two very different physical scenarios:
transmission from multilayer films and scattering from multilayer
nanoparticles. Finally, we propose a multi-task learning method to improve the
performance of different physical scenarios simultaneously in which each task
only has a small dataset
- …