29 research outputs found

    The design of test-section inserts for higher speed aeroacoustic testing in the Ames 80- by 120-foot wind tunnel

    Get PDF
    An engineering feasibility study was made of aeroacoustic inserts designed for large-scale acoustic research on aircraft models in the 80- by 120-Foot Wind Tunnel at NASA Ames Research Center. The goal was to find test-section modifications that would allow improved aeroacoustic testing at airspeeds equal to and above the current 100 knots limit. Results indicate that the required maximum airspeed drives the design of a particular insert. Using goals of 200, 150, and 100 knots airspeed, the analysis led to a 30 x 60 ft open-jet test section, a 40 x 80 ft open-jet test section, and a 70 x 110 ft closed test section with enhanced wall lining respectively. The open-jet inserts would be composed of a nozzle, collector, diffuser, and acoustic wedges incorporated in the existing 80 x 120 ft test section. The closed test section would be composed of approximately 5-ft acoustic wedges covered by a porous plate attached to the test-section walls of the existing 80 x 120. All designs would require a double row of acoustic vanes between the test section and fan drive to attenuate fan noise and, in the case of the open-jet designs, to control flow separation at the diffuser downstream end. The inserts would allow virtually anechoic acoustics studies of large helicopter models, jets, and V/STOL aircraft models in simulated flight. Model scale studies would be necessary to optimize the aerodynamic and acoustic performance of any of the designs. Successful development of acoustically transparent walls, though not strictly necessary to the project, would lead to a porous-wall test section that could be substituted for any of the open-jet designs, and thereby eliminate many aerodynamic and acoustic problems characteristic of open-jet shear layers

    Noise of the Harrier in vertical landing and takeoff

    Get PDF
    The noise of the Harrier AV8C aircraft in vertical takeoff and landing was measured 100 feet to the side of the aircraft where jet noise dominates. The noise levels were quite high - up to 125 dB overall sound level at 100 feet. The increased noise due to jet impingement on the ground is presented as a function of jet height to diameter ratio. The impingement noise with the aircraft close to the ground was 14 to 17 dB greater than noise from a free jet. Results are compared with small-scale jet impingement data acquired elsewhere. The agreement between small-scale and full-scale noise increase in ground effect is fairly good except with the jet close to the ground. It is proposed that differences in the jet Reynolds numbers and the resultant character of the jets may be partially responsible for the disparity in the full-scale and small-scale jet impingement noise. The difference between single-jet impingement and multiple-jet impingement may also have been responsible for the small-scale and full-scale disagreement

    Large-scale aeroacoustic research feasibility and conceptual design of test-section inserts for the Ames 80- by 120-foot wind tunnel

    Get PDF
    An engineering feasibility study was made of aeroacoustic inserts designed for large-scale acoustic research on aircraft models in the 80 by 120 foot Wind Tunnel at NASA Ames Research Center. The advantages and disadvantages of likely designs were analyzed. Results indicate that the required maximum airspeed leads to the design of a particular insert. Using goals of 200, 150, and 100 knots airspeed, the analysis indicated a 30 x 60 ft open-jet test section, a 40 x 80 ft open jet test section, and a 70 x 100 ft closed test section with enhanced wall lining, respectively. The open-jet inserts would be composed of a nozzle, collector, diffuser, and acoutic wedges incorporated in the existing 80 x 120 test section. The closed test section would be composed of approximately 5 ft acoustic wedges covered by a porous plate attached to the test section walls of the existing 80 x 120. All designs would require a double row of acoustic vanes between the test section and fan drive to attenuate fan noise and, in the case of the open-jet designs, to control flow separation at the diffuser downstream end. The inserts would allow virtually anechoic acoustic studies of large helicopter models, jets, and V/STOL aircraft models in simulated flight. Model scale studies would be necessary to optimize the aerodynamic and acoustic performance of any of the designs. In all designs studied, the existing structure would have to be reinforced. Successful development of acoustically transparent walls, though not strictly necessary to the project, would lead to a porous-wall test section that could be substituted for any of the open-jet designs, and thereby eliminate many aerodynamic and acoustic problems characteristic of open-jet shear layers. The larger size of the facility would make installation and removal of the insert components difficult. Consequently, scheduling of the existing 80 x 120 aerodynamic test section and scheduling of the open-jet test section would likely be made on an annual or longer basis. The enhanced wall-lining insert would likely be permanent. Although the modifications are technically feasible, the economic practicality of the project was not evaluated

    Acoustic and aerodynamic study of a pusher-propeller aircraft model

    Get PDF
    An aerodynamic and acoustic study was made of a pusher-propeller aircraft model in the NASA-Ames 7 x 10 ft Wind Tunnel. The test section was changed to operate as an open jet. The 591 mm diameter unswept propeller was operated alone and in the wake of three empennages: an I tail, Y tail, and a V tail. The radiated noise and detailed wake properties were measured. Results indicate that the unsteady blade loading caused by the blade interactions with the wake mean velocity distribution had a strong effect on the harmonics of blade passage noise. The blade passage harmonics above the first were substantially increased in all horizontal directions by the empennage/propeller interaction. Directivity in the plane of the propeller was maximum perpendicular to the blade surface. Increasing the tail loading caused the propeller harmonics to increase 3 to 5 dB for an empennage/propeller spacing of 0.38 mean empennage chords. The interaction noise became weak as empennage propeller spacing was increased beyond 1.0 mean empennage chord lengths. Unlike the mean wake deficit, the wake turbulence had only a small effect on the propeller noise, that effect being a small increase in the broadband noise

    Flow-field Survey of an Empennage Wake Interacting with a Pusher Propeller

    Get PDF
    The flow field between a model empennage and a 591-mm-diameter pusher propeller was studied in the Ames 7- by 10-Foot Wind Tunnel with directional pressure probes and hot-wire anemometers. The region probed was bounded by the empennage trailing edge and downstream propeller. The wake properties, including effects of propeller operation on the empennage wake, were investigated for two empennage geometries: one, a vertical tail fin, the other, a Y-tail with a 34 deg dihedral. Results showed that the effect of the propeller on the empennage wake upstream of the propeller was not strong. The flow upstream of the propeller was accelerated in the streamwise direction by the propeller, but the empennage wake width and velocity defect were relatively unaffected by the presence of the propeller. The peak turbulence in the wake near the propeller tip station, 0.66 diameter behind the vertical tail fin, was approximately 3 percent of the free-stream velocity. The velocity field data can be used in predictions of the acoustic field due to propeller-wake interaction

    Measurement of Model Noise in a Hard-Wall Wind Tunnel

    Get PDF
    Identification, analysis, and control of fluid-mechanically-generated sound from models of aircraft and automobiles in special low-noise, semi-anechoic wind tunnels are an important research endeavor. Such studies can also be done in aerodynamic wind tunnels that have hard walls if phased microphone arrays are used to focus on the noise-source regions and reject unwanted reflections or background noise. Although it may be difficult to simulate the total flyover or drive-by noise in a closed wind tunnel, individual noise sources can be isolated and analyzed. An acoustic and aerodynamic study was made of a 7-percent-scale aircraft model in a NASA Ames 7-by-10-ft (about 2-by-3-m) wind tunnel for the purpose of identifying and attenuating airframe noise sources. Simulated landing, takeoff, and approach configurations were evaluated at Mach 0.26. Using a phased microphone array mounted in the ceiling over the inverted model, various noise sources in the high-lift system, landing gear, fins, and miscellaneous other components were located and compared for sound level and frequency at one flyover location. Numerous noise-alleviation devices and modifications of the model were evaluated. Simultaneously with acoustic measurements, aerodynamic forces were recorded to document aircraft conditions and any performance changes caused by geometric modifications. Most modern microphone-array systems function in the frequency domain in the sense that spectra of the microphone outputs are computed, then operations are performed on the matrices of microphone-signal cross-spectra. The entire acoustic field at one station in such a system is acquired quickly and interrogated during postprocessing. Beam-forming algorithms are employed to scan a plane near the model surface and locate noise sources while rejecting most background noise and spurious reflections. In the case of the system used in this study, previous studies in the wind tunnel have identified noise sources up to 19 dB below the normal background noise of the wind tunnel. Theoretical predictions of array performance are used to minimize the width and the side lobes of the beam pattern of the microphone array for a given test arrangement. To capture flyover noise of the inverted model, a 104-element microphone array in a 622-mm-diameter cluster was installed in a 19-mm-thick poly(methyl methacrylate) plate in the ceiling of the test section of the wind tunnel above the aircraft model (see Figure 1). The microphones were of the condenser type, and their diaphragms were mounted flush in the array plate, which was recessed 12.7 mm into the ceiling and covered by a porous aromatic polyamide cloth (not shown in the figure) to minimize boundary-layer noise. This design caused the level of flow noise to be much less than that of flush-mount designs. The drawback of this design was that the cloth attenuated sound somewhat and created acoustic resonances that could grow to several dB at a frequency of 10 kHz

    Flow-induced resonance of screen-covered cavities

    Get PDF
    An experimental study of screen-covered cavities exposed to airflow tangent to the screen is described. The term screen refers to a thin metal plate perforated with a repetitive pattern of round holes. The purpose was to find the detailed aerodynamic and acoustic mechanisms responsible for screen-covered cavity resonance and to find ways to control the pressure oscillations. Results indicate that strong cavity acoustic resonances are created by screen orifices that shed vortices which couple resonance by choosing hole spacings such that shed vortices do not arrive at a downstream orifice in synchronization with cavity pressure oscillations. The proper hole pattern is effective at all airspeeds. It was also discovered that a reduction of orifice size tended to weaken the screen/cavity interaction regardless of hole pattern, probably because of viscous flow losses at the orifices. The screened cavities that resonated did so at much higher frequencies than the equivalent open cavity. The classical large eddy phenomenon occurs at the relatively small scale of the orifices (the excitation is typically of high frequency). The wind tunnel study was made at airspeeds from 0 to 100m/sec. The 457-mm-long by 1.09-m-high rectangular cavities had length-to-depth ratios greater than one, which is indicative of shallow cavities. The cavity screens were perforated in straight rows and columns with hole diameters ranging from 1.59 to 6.35 mm and with porosities from 2.6 to 19.6 percent

    J-85 jet engine noise measured in the ONERA S1 wind tunnel and extrapolated to far field

    Get PDF
    Noise from a J-85 turbojet with a conical, convergent nozzle was measured in simulated flight in the ONERA S1 Wind Tunnel. Data are presented for several flight speeds up to 130 m/sec and for radiation angles of 40 to 160 degrees relative to the upstream direction. The jet was operated with subsonic and sonic exhaust speeds. A moving microphone on a 2 m sideline was used to survey the radiated sound field in the acoustically treated, closed test section. The data were extrapolated to a 122 m sideline by means of a multiple-sideline source-location method, which was used to identify the acoustic source regions, directivity patterns, and near field effects. The source-location method is described along with its advantages and disadvantages. Results indicate that the effects of simulated flight on J-85 noise are significant. At the maximum forward speed of 130 m/sec, the peak overall sound levels in the aft quadrant were attentuated approximately 10 dB relative to sound levels of the engine operated statically. As expected, the simulated flight and static data tended to merge in the forward quadrant as the radiation angle approached 40 degrees. There is evidence that internal engine or shock noise was important in the forward quadrant. The data are compared with published predictions for flight effects on pure jet noise and internal engine noise. A new empirical prediction is presented that relates the variation of internally generated engine noise or broadband shock noise to forward speed. Measured near field noise extrapolated to far field agrees reasonably well with data from similar engines tested statically outdoors, in flyover, in a wind tunnel, and on the Bertin Aerotrain. Anomalies in the results for the forward quadrant and for angles above 140 degrees are discussed. The multiple-sideline method proved to be cumbersome in this application, and it did not resolve all of the uncertainties associated with measurements of jet noise close to the jet. The simulation was complicated by wind-tunnel background noise and the propagation of low frequency sound around the circuit

    Aerodynamic design of gas and aerosol samplers for aircraft

    Get PDF
    The aerodynamic design of airborne probes for the capture of air and aerosols is discussed. Emphasis is placed on the key parameters that affect proper sampling, such as inlet-lip design, internal duct components for low pressure drop, and exhaust geometry. Inlet designs that avoid sonic flow conditions on the lip and flow separation in the duct are shown. Cross-stream velocities of aerosols are expressed in terms of droplet density and diameter. Flow curvature, which can cause aerosols to cross streamlines and impact on probe walls, can be minimized by means of a proper inlet shape and proper probe orientation, and by avoiding bends upstream of the test section. A NASA panel code called PMARC was used successfully to compute streamlines around aircraft and probes, as well as to compute to local velocity and pressure distributions in inlets. A NACA 1-series inlet with modified lip radius was used for the airborne capture of stratospheric chlorine monoxide at high altitude and high flight speed. The device has a two-stage inlet that decelerates the inflow with little disturbance to the flow through the test section. Diffuser design, exhaust hood design, valve loss, and corner vane geometry are discussed

    Boundary layer control device for duct silencers

    Get PDF
    A boundary layer control device includes a porous cover plate, an acoustic absorber disposed under the porous cover plate, and a porous flow resistive membrane interposed between the porous cover plate and the acoustic absorber. The porous flow resistive membrane has a flow resistance low enough to permit sound to enter the acoustic absorber and high enough to damp unsteady flow oscillations
    corecore