353 research outputs found

    Self-Consistent Mean-Field Theory for Frustrated Josephson Junction Arrays

    Full text link
    We review the self-consistent mean-field theory for charge-frustrated Josephson junction arrays. Using (\phi is the phase of the superconducting wavefunction) as order parameter and imposing the self-consistency condition, we compute the phase boundary line between the superconducting region ( not equal to zero) and the insulating one ( = 0). For a uniform offset charge q=e the superconducting phase increases with respect to the situation in which q=0. Here, we generalize the self-consistent mean-field theory to include the effects induced by a random distribution of offset charges and/or of diagonal self-capacitances. For most of the phase diagram, our results agree with the outcomes of Quantum Monte Carlo simulations as well as with previous studies using the path-integral approach.Comment: Presented by F. P. Mancini at the Conference "Highlights in Condensed Matter Physics", May 9-11 2003, Salerno, Ital

    On Defect-Mediated Transitions in Bosonic Planar Lattices

    Full text link
    We discuss the finite-temperature properties of Bose-Einstein condensates loaded on a 2D optical lattice. In an experimentally attainable range of parameters the system is described by the XY model, which undergoes a Berezinskii-Kosterlitz-Thouless (BKT) transition driven by the vortex pair unbinding. The interference pattern of the expanding condensates provides the experimental signature of the BKT transition: near the critical temperature, the k=0 component of the momentum distribution sharply decreases

    Adiabatic Control of the Electron Phase in a Quantum Dot

    Full text link
    A Berry phase can be added to the wavefunction of an isolated quantum dot by adiabatically modulating a nonuniform electric field along a time-cycle. The dot is tuned close to a three-level degeneracy, which provides a wide range of possibilities of control. We propose to detect the accumulated phase by capacitively coupling the dot to a double-path inteferometer. The effective Hamiltonian for the phase-sensitive coupling is discussed in detail.Comment: 14 pages, 2 .eps figure

    On the Doubling Phenomenon in Lattice Chern-Simons Theories

    Get PDF
    We analyse the pure Chern-Simons theory on an Euclidean infinite lattice. We point out that, as a consequence of its symmetries, the Chern-Simons theory does not have an integrable kernel. Due to the linearity of the action in the derivatives, the situation is very similar to the one arising in the lattice formulation of fermionic theories. Doubling of bosonic degrees of freedom is removed by adding a Maxwell term with a mechanism similar to the one proposed by Wilson for fermionic models.Comment: Lattice 2000, 4 pages, Late

    Superconductors with Topological Order and their Realization in Josephson Junction Arrays

    Get PDF
    We will describe a new superconductivity mechanism, proposed by the authors in [1], which is based on a topologically ordered ground state rather than on the usual Landau mechanism of spontaneous symmetry breaking. Contrary to anyon superconductivity it works in any dimension and it preserves P-and T-invariance. In particular we will discuss the low-energy effective field theory, what would be the Landau-Ginzburg formulation for conventional superconductors.Comment: invited review, to appear in "Superconductivity Research Advances", Nova Publishers, 32 page
    • …
    corecore