353 research outputs found
Self-Consistent Mean-Field Theory for Frustrated Josephson Junction Arrays
We review the self-consistent mean-field theory for charge-frustrated
Josephson junction arrays. Using (\phi is the phase of the
superconducting wavefunction) as order parameter and imposing the
self-consistency condition, we compute the phase boundary line between the
superconducting region ( not equal to zero) and the insulating one
( = 0). For a uniform offset charge q=e the superconducting phase
increases with respect to the situation in which q=0. Here, we generalize the
self-consistent mean-field theory to include the effects induced by a random
distribution of offset charges and/or of diagonal self-capacitances. For most
of the phase diagram, our results agree with the outcomes of Quantum Monte
Carlo simulations as well as with previous studies using the path-integral
approach.Comment: Presented by F. P. Mancini at the Conference "Highlights in Condensed
Matter Physics", May 9-11 2003, Salerno, Ital
On Defect-Mediated Transitions in Bosonic Planar Lattices
We discuss the finite-temperature properties of Bose-Einstein condensates
loaded on a 2D optical lattice. In an experimentally attainable range of
parameters the system is described by the XY model, which undergoes a
Berezinskii-Kosterlitz-Thouless (BKT) transition driven by the vortex pair
unbinding. The interference pattern of the expanding condensates provides the
experimental signature of the BKT transition: near the critical temperature,
the k=0 component of the momentum distribution sharply decreases
Adiabatic Control of the Electron Phase in a Quantum Dot
A Berry phase can be added to the wavefunction of an isolated quantum dot by
adiabatically modulating a nonuniform electric field along a time-cycle. The
dot is tuned close to a three-level degeneracy, which provides a wide range of
possibilities of control. We propose to detect the accumulated phase by
capacitively coupling the dot to a double-path inteferometer. The effective
Hamiltonian for the phase-sensitive coupling is discussed in detail.Comment: 14 pages, 2 .eps figure
On the Doubling Phenomenon in Lattice Chern-Simons Theories
We analyse the pure Chern-Simons theory on an Euclidean infinite lattice. We
point out that, as a consequence of its symmetries, the Chern-Simons theory
does not have an integrable kernel. Due to the linearity of the action in the
derivatives, the situation is very similar to the one arising in the lattice
formulation of fermionic theories. Doubling of bosonic degrees of freedom is
removed by adding a Maxwell term with a mechanism similar to the one proposed
by Wilson for fermionic models.Comment: Lattice 2000, 4 pages, Late
Superconductors with Topological Order and their Realization in Josephson Junction Arrays
We will describe a new superconductivity mechanism, proposed by the authors
in [1], which is based on a topologically ordered ground state rather than on
the usual Landau mechanism of spontaneous symmetry breaking. Contrary to anyon
superconductivity it works in any dimension and it preserves P-and
T-invariance. In particular we will discuss the low-energy effective field
theory, what would be the Landau-Ginzburg formulation for conventional
superconductors.Comment: invited review, to appear in "Superconductivity Research Advances",
Nova Publishers, 32 page
- …