221,934 research outputs found
Spacecraft-induced plasma energization and its role in flow phenomena
Plasma instabilities induced by orbiting vehicles can cause many important phenomena ranging from electron and ion heating and suprathermal electron tail energization, to enhanced ionization and optical emissions. We outline the basic collective processes leading to plasma energization near plasma sheaths and in regions of neutral gas streaming through plasma, and discuss the role of the induced collective effects in producing the optical emission spectra
Laboratory studies of atomic collision processes of importance in planetary atmospheres
Progress in the following research supported under NSG 7386 is reported: (1) measurement of differential cross sections for atomic and molecular collisions relevant to analysis and modeling of data from Pioneer 11, Pioneer 12, Voyager 1, and Voyager 2; (2) analysis of measured differential cross section results to provide scattering data in forms that are easy to apply to atmospheric modeling work; (3) analysis of the data to give basic information on the molecular potentials involved in the scattering process; and (4) development and initial use of apparatus to study dissociative processes in neutral molecules
Laboratory studies of atomic collision processes of importance in planetary atmospheres
A series of differential cross sections for angular scattering and charge transfer was measured. These studies employ position-sensitive detectors (PSD's) to collect collision products scattered over a wide range of angles; and the research program includes investigation of differential cross sections for total angular scattering, charge transfer, stripping, and other collisions. All of these processes can be studied with the same basic apparatus, but minor modifications in the equipment details and in the data acquisition programs and techniques are required for each individual experiment
Electron microprobe study of lunar and planetary zoned plagioclase feldspars: An analytical and experimental study of zoning in plagioclase
Natural and experimentally grown zoned plagioclase feldspars were examined by electron microprobe. The analyses revealed discontinuous, sector, and oscillary chemical zoning superimposed on continuous normal or reverse zoning trends. Postulated mechanisms for the origin of zoning are based on either physical changes external to the magma (P, T, H2O saturation) or kinetic changes internal to the magma (diffusion, supersaturation, growth rate). Comparison of microprobe data on natural zoned plagioclase with zoned plagioclase grown in controlled experiments show that it may be possible to distinguish zonal development resulting from physio-chemical changes to the bulk magma from local kinetic control on the growth of individual crystals
Radio propagation through solar and other extraterrestrial ionized media
The present S- and X-band communications needs in deep space are addressed to illustrate the aspects which are affected by propagation through extraterrestrial plasmas. The magnitude, critical threshold, and frequency dependence of some eight propagation effects for an S-band propagation path passing within 4 solar radii of the Sun are described. The theory and observation of propagation in extraterrestrial plasmas are discussed and the various plasma states along a near solar propagation path are illustrated. Classical magnetoionic theory (cold anisotropic plasma) is examined for its applicability to the path in question. The characteristics of the plasma states found along the path are summarized and the errors in some of the standard approximations are indicated. Models of extraterrestrial plasmas are included. Modeling the electron density in the solar corona and solar wind, is emphasized but some cursory information on the terrestrial planets plus Jupiters is included
Closed cycle electric discharge laser design investigation
Closed cycle CO2 and CO electric discharge lasers were studied. An analytical investigation assessed scale-up parameters and design features for CO2, closed cycle, continuous wave, unstable resonator, electric discharge lasing systems operating in space and airborne environments. A space based CO system was also examined. The program objectives were the conceptual designs of six CO2 systems and one CO system. Three airborne CO2 designs, with one, five, and ten megawatt outputs, were produced. These designs were based upon five minute run times. Three space based CO2 designs, with the same output levels, were also produced, but based upon one year run times. In addition, a conceptual design for a one megawatt space based CO laser system was also produced. These designs include the flow loop, compressor, and heat exchanger, as well as the laser cavity itself. The designs resulted in a laser loop weight for the space based five megawatt system that is within the space shuttle capacity. For the one megawatt systems, the estimated weight of the entire system including laser loop, solar power generator, and heat radiator is less than the shuttle capacity
Comparison of mass limiting two-phase flow in a straight tube and in a nozzle
Mass-limiting and near mass-limiting two-phase flow in straight tube and nozzle of refrigerant flow loop syste
Ship and satellite bio-optical research in the California Bight
Mesoscale biological patterns and processes in productive coastal waters were studied. The physical and biological processes leading to chlorophyll variability were investigated. The ecological and evolutionary significance of this variability, and its relation to the prediction of fish recruitment and marine mammal distributions was studied. Seasonal primary productivity (using chlorophyll as an indication of phytoplankton biomass) for the entire Southern California Bight region was assessed. Complementary and contemporaneous ship and satellite (Nimbus 7-CZCS) bio-optical data from the Southern California Bight and surrounding waters were obtained and analyzed. These data were also utilized for the development of multi-platform sampling strategies and the optimization of algorithms for the estimation of phytoplankton biomass and primary production from satellite imagery
- …