3 research outputs found
Counting nodal domains on surfaces of revolution
We consider eigenfunctions of the Laplace-Beltrami operator on special
surfaces of revolution. For this separable system, the nodal domains of the
(real) eigenfunctions form a checker-board pattern, and their number is
proportional to the product of the angular and the "surface" quantum numbers.
Arranging the wave functions by increasing values of the Laplace-Beltrami
spectrum, we obtain the nodal sequence, whose statistical properties we study.
In particular we investigate the distribution of the normalized counts
for sequences of eigenfunctions with where . We show that the distribution approaches
a limit as (the classical limit), and study the leading
corrections in the semi-classical limit. With this information, we derive the
central result of this work: the nodal sequence of a mirror-symmetric surface
is sufficient to uniquely determine its shape (modulo scaling).Comment: 36 pages, 8 figure
On the Nodal Count Statistics for Separable Systems in any Dimension
We consider the statistics of the number of nodal domains aka nodal counts
for eigenfunctions of separable wave equations in arbitrary dimension. We give
an explicit expression for the limiting distribution of normalised nodal counts
and analyse some of its universal properties. Our results are illustrated by
detailed discussion of simple examples and numerical nodal count distributions.Comment: 21 pages, 4 figure