57 research outputs found
The Hubble Constant from the Gravitational Lens B1608+656
We present a refined gravitational lens model of the four-image lens system
B1608+656 based on new and improved observational constraints: (i) the three
independent time-delays and flux-ratios from VLA observations, (ii) the
radio-image positions from VLBA observations, (iii) the shape of the
deconvolved Einstein Ring from optical and infrared HST images, (iv) the
extinction-corrected lens-galaxy centroids and structural parameters, and (v) a
stellar velocity dispersion, sigma_ap=247+-35 km/s, of the primary lens galaxy
(G1), obtained from an echelle spectrum taken with the Keck--II telescope. The
lens mass model consists of two elliptical mass distributions with power-law
density profiles and an external shear, totaling 22 free parameters, including
the density slopes which are the key parameters to determine the value of H_0
from lens time delays. This has required the development of a new lens code
that is highly optimized for speed. The minimum-chi^2 model reproduces all
observations very well, including the stellar velocity dispersion and the shape
of the Einstein Ring. A combined gravitational-lens and stellar dynamical
analysis leads to a value of the Hubble Constant of H_0=75(+7/-6) km/s/Mpc (68
percent CL; Omega_m=0.3, Omega_Lambda=0.7. The non-linear error analysis
includes correlations between all free parameters, in particular the density
slopes of G1 and G2, yielding an accurate determination of the random error on
H_0. The lens galaxy G1 is ~5 times more massive than the secondary lens galaxy
(G2), and has a mass density slope of gamma_G1=2.03(+0.14/-0.14) +- 0.03 (68
percent CL) for rho~r^-gamma', very close to isothermal (gamma'=2). (Abridged)Comment: 17 pages, 6 figures, 5 tables; revised version with correct fig.6 and
clarified text based on referee report; conclusions unchange
Analysis of the intra-night variability of BL Lacertae during its August 2020 flare
We present an analysis of the photometry of the blazar BL Lacertae on
diverse timescales from mid-July to mid-September 2020. We have used 11
different optical telescopes around the world and have collected data over 84
observational nights. The observations cover the onset of a new activity phase
of BL Lacertae started in August 2020 (termed as the August 2020 flare by us),
and the analysis is focused on the intra-night variability. On short-term
timescales, (i) flux varied with ~2.2\,mag in band, (ii) the spectral index
was found to be weakly dependent on the flux (i.e., the variations could be
considered mildly chromatic) and (iii) no periodicity was detected. On
intra-night timescales, BL Lacertae was found to show bluer-when-brighter
chromatism predominantly. We also found two cases of significant inter-band
time lags of the order of a few minutes. The duty cycle of the blazar during
the August 2020 flare was estimated to be quite high (~90\% or higher). We
decomposed the intra-night light curves into individual flares and determined
their characteristics. On the basis of our analysis and assuming the turbulent
jet model, we determined some characteristics of the emitting regions: Doppler
factor, magnetic field strength, electron Lorentz factor, and radius. The radii
determined were discussed in the framework of the Kolmogorov theory of
turbulence. We also estimated the weighted mean structure function slope on
intra-night timescales, related it to the slope of the power spectral density,
and discussed it with regard to the origin of intra-night variability.Comment: 46 pages, 19 figures, 8 tables, accepted for publication in The
Astrophysical Journal Supplement Series (manuscript version after proof
correction
Nature of Intra-night Optical Variability of BL Lacertae
We present the results of extensive multi-band intra-night optical monitoring
of BL Lacertae during 2010--2012. BL Lacertae was very active in this period
and showed intense variability in almost all wavelengths. We extensively
observed it for a total for 38 nights; on 26 of them observations were done
quasi-simultaneously in B, V, R and I bands (totaling 113 light curves), with
an average sampling interval of around 8 minutes. BL Lacertae showed
significant variations on hour-like timescales in a total of 19 nights in
different optical bands. We did not find any evidence for periodicities or
characteristic variability time-scales in the light curves.
The intranight variability amplitude is generally greater at higher
frequencies and decreases as the source flux increases.
We found spectral variations in BL Lacertae in the sense that the optical
spectrum becomes flatter as the flux increases but in several flaring states
deviates from the linear trend suggesting different jet components contributing
to the emission at different times.Comment: 12 Pages, 5 figures, 3 Tables, Accepted for Publication in MNRA
Multi-band behaviour of the TeV blazar PG 1553+113 in optical range on diverse timescales. Flux and spectral variations
Context. The TeV BL Lac object PG1553+113 is one of the primary candidates for a binary supermassive black hole system.Aims. We study the flux and spectral variability of PG1553+113 on intra-night to long-term timescales using (i) BVRI data collected over 76 nights from January 2016 to August 2019 involving nine optical telescopes and (ii) historical VR data (including ours) obtained for the period from 2005 to 2019.Methods. We analysed the light curves using various statistical tests, fitting and cross-correlation techniques, and methods for the search for periodicity. We examined the colour-magnitude diagrams before and after the corresponding light curves were corrected for the long-term variations.Results. Our intra-night monitoring, supplemented with literature data, result in a low duty cycle of ∼(10?18)%. In April 2019, we recorded a flare, which marks the brightest state of PG1553+113 for the period from 2005 to 2019: R ≃ 13.2mag. This flare is found to show a clockwise spectral hysteresis loop on its VR colour-magnitude diagram and a time lag in the sense that the V-band variations lead the R-band ones.We obtain estimates of the radius, the magnetic field strength, and the electron energy that characterize the emission region related to the flare.We find a median period of (2.21±0.04) years using the historical light curves. In addition, we detect a secondary period of about 210 days using the historical light curves corrected for the long-term variations. We briefly discuss the possible origin of this period.Fil: Agarwal, A.. Indian Institute Of Astrophysics; India. Raman Research Institute; IndiaFil: Mihov, B.. Institute Of Astronomy And Nao; BulgariaFil: Andruchow, Ileana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Cellone, Sergio Aldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Complejo Astronómico "El Leoncito". Universidad Nacional de Córdoba. Complejo Astronómico "El Leoncito". Universidad Nacional de la Plata. Complejo Astronómico "El Leoncito". Universidad Nacional de San Juan. Complejo Astronómico "El Leoncito"; ArgentinaFil: Anupama, G. C.. Indian Institute Of Astrophysics; IndiaFil: Agrawal, V.. Embibe; IndiaFil: Zola, S.. Jagiellonian University; PoloniaFil: Slavcheva Mihova, L.. Institute Of Astronomy And Nao; BulgariaFil: Özdönmez, A.. Ataturk University; TurquíaFil: Ege, E.. Istanbul University; TurquíaFil: Raj, A.. University Enclave; IndiaFil: Mammana, Luis Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Complejo Astronómico "El Leoncito". Universidad Nacional de Córdoba. Complejo Astronómico "El Leoncito". Universidad Nacional de la Plata. Complejo Astronómico "El Leoncito". Universidad Nacional de San Juan. Complejo Astronómico "El Leoncito"; ArgentinaFil: Zibecchi, Lorena Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Fernandez Lajus, Eduardo Eusebio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentin
Multi-band behaviour of the TeV blazar PG 1553+113 in optical range on diverse timescales. Flux and spectral variations
Context. The TeV BL Lac object PG1553+113 is one of the primary candidates for a binary supermassive black hole system.Aims. We study the flux and spectral variability of PG1553+113 on intra-night to long-term timescales using (i) BVRI data collected over 76 nights from January 2016 to August 2019 involving nine optical telescopes and (ii) historical VR data (including ours) obtained for the period from 2005 to 2019.Methods. We analysed the light curves using various statistical tests, fitting and cross-correlation techniques, and methods for the search for periodicity. We examined the colour-magnitude diagrams before and after the corresponding light curves were corrected for the long-term variations.Results. Our intra-night monitoring, supplemented with literature data, result in a low duty cycle of ∼(10?18)%. In April 2019, we recorded a flare, which marks the brightest state of PG1553+113 for the period from 2005 to 2019: R ≃ 13.2mag. This flare is found to show a clockwise spectral hysteresis loop on its VR colour-magnitude diagram and a time lag in the sense that the V-band variations lead the R-band ones.We obtain estimates of the radius, the magnetic field strength, and the electron energy that characterize the emission region related to the flare.We find a median period of (2.21±0.04) years using the historical light curves. In addition, we detect a secondary period of about 210 days using the historical light curves corrected for the long-term variations. We briefly discuss the possible origin of this period.Fil: Agarwal, A.. Indian Institute Of Astrophysics; India. Raman Research Institute; IndiaFil: Mihov, B.. Institute Of Astronomy And Nao; BulgariaFil: Andruchow, Ileana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Cellone, Sergio Aldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Complejo Astronómico "El Leoncito". Universidad Nacional de Córdoba. Complejo Astronómico "El Leoncito". Universidad Nacional de la Plata. Complejo Astronómico "El Leoncito". Universidad Nacional de San Juan. Complejo Astronómico "El Leoncito"; ArgentinaFil: Anupama, G. C.. Indian Institute Of Astrophysics; IndiaFil: Agrawal, V.. Embibe; IndiaFil: Zola, S.. Jagiellonian University; PoloniaFil: Slavcheva Mihova, L.. Institute Of Astronomy And Nao; BulgariaFil: Özdönmez, A.. Ataturk University; TurquíaFil: Ege, E.. Istanbul University; TurquíaFil: Raj, A.. University Enclave; IndiaFil: Mammana, Luis Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Complejo Astronómico "El Leoncito". Universidad Nacional de Córdoba. Complejo Astronómico "El Leoncito". Universidad Nacional de la Plata. Complejo Astronómico "El Leoncito". Universidad Nacional de San Juan. Complejo Astronómico "El Leoncito"; ArgentinaFil: Zibecchi, Lorena Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Fernandez Lajus, Eduardo Eusebio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentin
UBVRI observations of the flickering of RS Ophiuchi at Quiescence
We report observations of the flickering variability of the recurrent nova RS
Oph at quiescence on the basis of simultaneous observations in 5 bands (UBVRI).
RS Oph has flickering source with (U-B)_0=-0.62 \pm 0.07, (B-V)_0=0.15 \pm
0.10, (V-R)_0=0.25 \pm 0.05. We find for the flickering source a temperature
T_fl = 9500 \pm 500 K, and luminosity L_fl = 50 - 150 L_sun (using a distance
of d=1.6kpc). We also find that on a (U-B) vs (B-V) diagram the flickering of
the symbiotic stars differs from that of the cataclysmic variables. The
possible source of the flickering is discussed. The data are available upon
request from the authors and on the web
www.astro.bas.bg/~rz/RSOph.UBVRI.2010.MNRAS.tar.gz.Comment: 7 pages, MNRAS (accepted
Dissecting the long-term emission behaviour of the BL Lac object Mrk 421
We report on long-term multiwavelengthmonitoring of blazar Mrk 421 by the GLAST-AGILE
Support Program of the Whole Earth Blazar Telescope (GASP-WEBT) collaboration and
Steward Observatory, and by the Swift and Fermi satellites. We study the source behaviour in
the period 2007–2015, characterized by several extreme flares. The ratio between the optical,
X-ray and γ -ray fluxes is very variable. The γ -ray flux variations show a fair correlation with
the optical ones starting from 2012.We analyse spectropolarimetric data and find wavelengthdependence
of the polarization degree (P), which is compatible with the presence of the
host galaxy, and no wavelength dependence of the electric vector polarization angle (EVPA).
Optical polarimetry shows a lack of simple correlation between P and flux and wide rotations of
the EVPA.We build broad-band spectral energy distributions with simultaneous near-infrared
and optical data from the GASP-WEBT and ultraviolet and X-ray data from the Swift satellite.
They show strong variability in both flux and X-ray spectral shape and suggest a shift of
the synchrotron peak up to a factor of ∼50 in frequency. The interpretation of the flux and
spectral variability is compatible with jet models including at least two emitting regions that
can change their orientation with respect to the line of sight.http://10.0.4.69/mnras/stx2185Accepted manuscrip
The nature of the intra-night optical variability in blazars
In this paper we present results of a short-term optical monitoring of 13
blazars. The objects were monitored mostly in the R-band for a total of ~ 160
hours between 2006 and 2011. We study the nature of the short-term variations
and show that most of them could be described as slow, smooth, and (almost)
linear changes of up to ~ 0.1 mag/hour, but many objects show no short-term
variations at all. In fact, we found only ~ 2 per cent chance to observe
variability of more than 0.1 mag/hour for the sample we observed. Hints for
quasi-periodic oscillations at very low amplitude levels are also found for
some objects. We briefly discuss some of the possible mechanisms to generate
the intra-night variability and the quasi-periodic oscillations.Comment: 10 pages, 13 figures, 1 table, Accepted for Publication in MNRA
Multiwavelength behaviour of the blazar 3C 279: decade-long study from γ-ray to radio
We report the results of decade-long (2008–2018) γ-ray to 1 GHz radio monitoring of the blazar 3C 279, including GASP/WEBT, Fermi and Swift data, as well as polarimetric and spectroscopic data. The X-ray and γ-ray light curves correlate well, with no delay ≳3 h, implying general cospatiality of the emission regions. The γ-ray–optical flux–flux relation changes with activity state, ranging from a linear to a more complex dependence. The behaviour of the Stokes parameters at optical and radio wavelengths, including 43 GHz Very Long Baseline Array images, supports either a predominantly helical magnetic field or motion of the radiating plasma along a spiral path. Apparent speeds of emission knots range from 10 to 37c, with the highest values requiring bulk Lorentz factors close to those needed to explain γ-ray variability on very short time-scales. The Mg II emission line flux in the ‘blue’ and ‘red’ wings correlates with the optical synchrotron continuum flux density, possibly providing a variable source of seed photons for inverse Compton scattering. In the radio bands, we find progressive delays of the most prominent light-curve maxima with decreasing frequency, as expected from the frequency dependence of the τ = 1 surface of synchrotron self-absorption. The global maximum in the 86 GHz light curve becomes less prominent at lower frequencies, while a local maximum, appearing in 2014, strengthens toward decreasing frequencies, becoming pronounced at ∼5 GHz. These tendencies suggest different Doppler boosting of stratified radio-emitting zones in the jet
- …