120 research outputs found

    Indirect Dark Matter Signatures in the Cosmic Dark Ages I. Generalizing the Bound on s-wave Dark Matter Annihilation from Planck

    Get PDF
    Recent measurements of the cosmic microwave background (CMB) anisotropies by Planck provide a sensitive probe of dark matter annihilation during the cosmic dark ages, and specifically constrain the annihilation parameter feffβŸ¨Οƒv⟩/mΟ‡f_\mathrm{eff} \langle \sigma v \rangle/m_\chi. Using new results (Paper II) for the ionization produced by particles injected at arbitrary energies, we calculate and provide fefff_\mathrm{eff} values for photons and e+eβˆ’e^+e^- pairs injected at keV-TeV energies; the fefff_\mathrm{eff} value for any dark matter model can be obtained straightforwardly by weighting these results by the spectrum of annihilation products. This result allows the sensitive and robust constraints on dark matter annihilation presented by the Planck Collaboration to be applied to arbitrary dark matter models with ss-wave annihilation. We demonstrate the validity of this approach using principal component analysis. As an example, we integrate over the spectrum of annihilation products for a range of Standard Model final states to determine the CMB bounds on these models as a function of dark matter mass, and demonstrate that the new limits generically exclude models proposed to explain the observed high-energy rise in the cosmic ray positron fraction. We make our results publicly available at http://nebel.rc.fas.harvard.edu/epsilon.Comment: 14 pages, 4 figures, supplemental data / tools available at http://nebel.rc.fas.harvard.edu/epsilon. Accompanying paper to "Indirect Dark Matter Signatures in the Cosmic Dark Ages II. Ionization, Heating and Photon Production from Arbitrary Energy Injections". v2 adds references, extra example in Fig. 4, and small updates from accompanying paper. This version to be submitted to Phys Rev

    Too Hot, Too Cold or Just Right? Implications of a 21-cm Signal for Dark Matter Annihilation and Decay

    Get PDF
    Measurements of the temperature of the baryons at the end of the cosmic dark ages can potentially set very precise constraints on energy injection from exotic sources, such as annihilation or decay of the dark matter. However, additional effects that lower the gas temperature can substantially weaken the expected constraints on exotic energy injection, whereas additional radiation backgrounds can conceal the effect of an increased gas temperature in measurements of the 21-cm hyperfine transition of neutral hydrogen. Motivated in part by recent claims of a detection of 21-cm absorption from a redshift of 17 by the EDGES experiment, we derive the constraints on dark matter annihilation and decay that can be placed in the presence of extra radiation backgrounds or effects that modify the gas temperature, such as dark matter-baryon scattering and early baryon-photon decoupling. We find that if the EDGES observation is confirmed, then constraints on light dark matter decaying or annihilating to electrons will in most scenarios be stronger than existing state-of-the-art limits from the cosmic microwave background, potentially by several orders of magnitude. More generally, our results allow mapping any future measurement of the global 21-cm signal into constraints on dark matter annihilation and decay, within the broad range of scenarios we consider.Comment: 22 pages with appendices, 12 figures, comments welcome; v2: references added with comments, typos corrected, minor change to millicharged DM limit

    Two Emission Mechanisms in the Fermi Bubbles: A Possible Signal of Annihilating Dark Matter

    Get PDF
    We study the variation of the spectrum of the Fermi Bubbles with Galactic latitude. Far from the Galactic plane (|b| > 30 degrees), the observed gamma-ray emission is nearly invariant with latitude, and is consistent with arising from inverse Compton scattering of the interstellar radiation field by cosmic-ray electrons with an approximately power-law spectrum. The same electrons in the presence of microgauss-scale magnetic fields can also generate the the observed microwave "haze". At lower latitudes (b < 20 degrees), in contrast, the spectrum of the emission correlated with the Bubbles possesses a pronounced spectral feature peaking at 1-4 GeV (in E^2 dN/dE) which cannot be generated by any realistic spectrum of electrons. Instead, we conclude that a second (non-inverse-Compton) emission mechanism must be responsible for the bulk of the low-energy, low-latitude emission. This second component is spectrally similar to the excess GeV emission previously reported from the Galactic Center (GC), and also appears spatially consistent with a luminosity per volume falling approximately as r^-2.4, where r is the distance from the GC. We argue that the spectral feature visible in the low-latitude Bubbles is the extended counterpart of the GC excess, now detected out to at least 2-3 kpc from the GC. The spectrum and angular distribution of the signal is consistent with that predicted from ~10 GeV dark matter particles annihilating to leptons, or from ~50 GeV dark matter particles annihilating to quarks, following a distribution similar to the canonical Navarro-Frenk-White (NFW) profile. We also consider millisecond pulsars as a possible astrophysical explanation for the signal, as observed millisecond pulsars possess a spectral cutoff at approximately the required energy. Any such scenario would require a large population of unresolved millisecond pulsars extending at least 2-3 kpc from the GC.Comment: 26 pages, 20 figure

    Multi-Step Cascade Annihilations of Dark Matter and the Galactic Center Excess

    Get PDF
    If dark matter is embedded in a non-trivial dark sector, it may annihilate and decay to lighter dark-sector states which subsequently decay to the Standard Model. Such scenarios - with annihilation followed by cascading dark-sector decays - can explain the apparent excess GeV gamma-rays identified in the central Milky Way, while evading bounds from dark matter direct detection experiments. Each 'step' in the cascade will modify the observable signatures of dark matter annihilation and decay, shifting the resulting photons and other final state particles to lower energies and broadening their spectra. We explore, in a model-independent way, the effect of multi-step dark-sector cascades on the preferred regions of parameter space to explain the GeV excess. We find that the broadening effects of multi-step cascades can admit final states dominated by particles that would usually produce too sharply peaked photon spectra; in general, if the cascades are hierarchical (each particle decays to substantially lighter particles), the preferred mass range for the dark matter is in all cases 20-150 GeV. Decay chains that have nearly-degenerate steps, where the products are close to half the mass of the progenitor, can admit much higher DM masses. We map out the region of mass/cross-section parameter space where cascades (degenerate, hierarchical or a combination) can fit the signal, for a range of final states. In the current work, we study multi-step cascades in the context of explaining the GeV excess, but many aspects of our results are general and can be extended to other applications.Comment: 18 pages, 15 figures, 2 tables; comments welcome. Updated to published versio
    • …
    corecore