4,571 research outputs found

    A method for atomistic spin dynamics simulations: implementation and examples

    Full text link
    We present a method for performing atomistic spin dynamic simulations. A comprehensive summary of all pertinent details for performing the simulations such as equations of motions, models for including temperature, methods of extracting data and numerical schemes for performing the simulations is given. The method can be applied in a first principles mode, where all interatomic exchange is calculated self-consistently, or it can be applied with frozen parameters estimated from experiments or calculated for a fixed spin-configuration. Areas of potential applications to different magnetic questions are also discussed. The method is finally applied to one situation where the macrospin model breaks down; magnetic switching in ultra strong fields.Comment: 14 pages, 19 figure

    Atomistic spin dynamics of the CuMn spin glass alloy

    Full text link
    We demonstrate the use of Langevin spin dynamics for studying dynamical properties of an archetypical spin glass system. Simulations are performed on CuMn (20% Mn) where we study the relaxation that follows a sudden quench of the system to the low temperature phase. The system is modeled by a Heisenberg Hamiltonian where the Heisenberg interaction parameters are calculated by means of first-principles density functional theory. Simulations are performed by numerically solving the Langevin equations of motion for the atomic spins. It is shown that dynamics is governed, to a large degree, by the damping parameter in the equations of motion and the system size. For large damping and large system sizes we observe the typical aging regime.Comment: 18 pages, 9 figure

    Dynamics of diluted magnetic semiconductors from atomistic spin dynamics simulations: Mn doped GaAs as a case study

    Full text link
    The dynamical behavior of the magnetism of diluted magnetic semiconductors (DMS) has been investigated by means of atomistic spin dynamics simulations. The conclusions drawn from the study are argued to be general for DMS systems in the low concentration limit, although all simulations are done for 5% Mn-doped GaAs with various concentrations of As antisite defects. The magnetization curve, M(T)M(T), and the Curie temperature TCT_C have been calculated, and are found to be in good correspondence to results from Monte Carlo simulations and experiments. Furthermore, equilibrium and non-equilibrium behavior of the magnetic pair correlation function have been extracted. The dynamics of DMS systems reveals a substantial short ranged magnetic order even at temperatures at or above the ordering temperature, with a non-vanishing pair correlation function extending up to several atomic shells. For the high As antisite concentrations the simulations show a short ranged anti-ferromagnetic coupling, and a weakened long ranged ferromagnetic coupling. For sufficiently large concentrations we do not observe any long ranged ferromagnetic correlation. A typical dynamical response shows that starting from a random orientation of moments, the spin-correlation develops very fast (\sim 1ps) extending up to 15 atomic shells. Above \sim 10 ps in the simulations, the pair correlation is observed to extend over some 40 atomic shells. The autocorrelation function has been calculated and compared with ferromagnets like bcc Fe and spin-glass materials. We find no evidence in our simulations for a spin-glass behaviour, for any concentration of As antisites. Instead the magnetic response is better described as slow dynamics, at least when compared to that of a regular ferromagnet like bcc Fe.Comment: 24 pages, 15 figure

    System tests of the ATLAS semiconductor tracker barrel

    Get PDF

    Simulation of a spin-wave instability from atomistic spin dynamics

    Get PDF
    We study the spin dynamics of a Heisenberg model at finite temperature in the presence of an external field or a uniaxial anisotropy. For the case of the uniaxial anisotropy our simulations show that the macro moment picture breaks down. An effect which we refer to as a spin-wave instability (SWI) results in a non-dissipative Bloch-Bloembergen type relaxation of the macro moment where the size of the macro moment changes, and can even be made to disappear. This relaxation mechanism is studied in detail by means of atomistic spin dynamics simulations.Comment: 8 pages, 12 figures, submitted to PR

    Performance of an Operating High Energy Physics Data Grid: D0SAR-Grid

    Full text link
    The D0 experiment at Fermilab's Tevatron will record several petabytes of data over the next five years in pursuing the goals of understanding nature and searching for the origin of mass. Computing resources required to analyze these data far exceed capabilities of any one institution. Moreover, the widely scattered geographical distribution of D0 collaborators poses further serious difficulties for optimal use of human and computing resources. These difficulties will exacerbate in future high energy physics experiments, like the LHC. The computing grid has long been recognized as a solution to these problems. This technology is being made a more immediate reality to end users in D0 by developing a grid in the D0 Southern Analysis Region (D0SAR), D0SAR-Grid, using all available resources within it and a home-grown local task manager, McFarm. We will present the architecture in which the D0SAR-Grid is implemented, the use of technology and the functionality of the grid, and the experience from operating the grid in simulation, reprocessing and data analyses for a currently running HEP experiment.Comment: 3 pages, no figures, conference proceedings of DPF04 tal

    Spin-Transfer Torque in Helical Spin-Density Waves

    Full text link
    The current driven magnetisation dynamics of a helical spin-density wave is investigated. Expressions for calculating the spin-transfer torque of real systems from first principles density functional theory are presented. These expressions are used for calculating the spin-transfer torque for the spin spirals of Er and fcc Fe at two different lattice volumes. It is shown that the calculated torque induces a rigid rotation of the order parameter with respect to the spin spiral axis. The torque is found to depend on the wave vector of the spin spiral and the spin-polarisation of the Fermi surface states. The resulting dynamics of the spin spiral is also discussed.Comment: 6 pages 2 figure

    Simulation of a spin-wave instability from atomistic spin dynamics

    Full text link
    We study the spin dynamics of a Heisenberg model at finite temperature in the presence of an external field or a uniaxial anisotropy. For the case of the uniaxial anisotropy our simulations show that the macro moment picture breaks down. An effect which we refer to as a spin-wave instability (SWI) results in a non-dissipative Bloch-Bloembergen type relaxation of the macro moment where the size of the macro moment changes, and can even be made to disappear. This relaxation mechanism is studied in detail by means of atomistic spin dynamics simulations.Comment: 8 pages, 12 figures, submitted to PR

    Thermally activated magnetization reversal in monoatomic magnetic chains on surfaces studied by classical atomistic spin-dynamics simulations

    Full text link
    We analyze the spontaneous magnetization reversal of supported monoatomic chains of finite length due to thermal fluctuations via atomistic spin-dynamics simulations. Our approach is based on the integration of the Landau-Lifshitz equation of motion of a classical spin Hamiltonian at the presence of stochastic forces. The associated magnetization lifetime is found to obey an Arrhenius law with an activation barrier equal to the domain wall energy in the chain. For chains longer than one domain-wall width, the reversal is initiated by nucleation of a reversed magnetization domain primarily at the chain edge followed by a subsequent propagation of the domain wall to the other edge in a random-walk fashion. This results in a linear dependence of the lifetime on the chain length, if the magnetization correlation length is not exceeded. We studied chains of uniaxial and tri-axial anisotropy and found that a tri-axial anisotropy leads to a reduction of the magnetization lifetime due to a higher reversal attempt rate, even though the activation barrier is not changed.Comment: 2nd version contains some improvements and new Appendi

    The programmable processor

    Full text link
    [EN] Reconfigurable optical chips made from 2D meshes of connected waveguides could pave the way for programmable, general purpose microwave photonics processors.Capmany Francoy, J.; Gasulla Mestre, I.; Pérez-López, D. (2016). The programmable processor. Nature Photonics. 10:6-8. doi:10.1038/nphoton.2015.254S6810Waterhouse, R. & Novak, D. IEEE Microwave Mag. 16, 84–92 (2015).Skubic, B., Bottari, G., Rostami, A., Cavaliere, F. & Ölen, P. IEEE J. Lightwave Technol. 33, 1084–1091 (2015).Nature Photonics Technology Focus http://www.nature.com/nphoton/journal/v5/n12/techfocus/index.html (2011).Marpaung, D. et al. Lasers Phot. Rev. 7, 506–538 (2013).Pérez, D., Gasulla, I. & Capmany, J. Opt. Express 23, 14640–14654 (2015).Zhuang, L. et al. Optica 2, 854–859 (2015).Smit, M. et al. Semicond. Sci. Technol. 28, 083001 (2014).Guan, B. B. et al. IEEE J. Sel. Top. Quantum Electron. 20, 359–368 (2014).Wang, J. et al. Nature Commun. 6, 5957 (2015).Miller, D. A. B. Optica 2, 747–750 (2015)
    corecore