173 research outputs found
Magnetic pyroxenes LiCrGe2O6 and LiCrSi2O6: dimensionality crossover in a non-frustrated S=3/2 Heisenberg model
The magnetism of magnetoelectric = 3/2 pyroxenes LiCrSiO and
LiCrGeO is studied by density functional theory (DFT) calculations,
quantum Monte Carlo (QMC) simulations, neutron diffraction, as well as
low-field and high-field magnetization measurements. In contrast with earlier
reports, we find that the two compounds feature remarkably different, albeit
non-frustrated magnetic models. In LiCrSiO, two relevant exchange
integrals, 9 K along the structural chains and
2 K between the chains, form a 2D anisotropic honeycomb lattice. In
contrast, the spin model of LiCrGeO is constituted of three different
exchange couplings. Surprisingly, the leading exchange
2.3 K operates between the chains, while 1.2 K is about
two times smaller. The additional interlayer coupling
renders this model 3D. QMC simulations reveal excellent agreement between
our magnetic models and the available experimental data. Underlying mechanisms
of the exchange couplings, magnetostructural correlations, as well as
implications for other pyroxene systems are discussed.Comment: 11 pages, 8 figures, 3 tables + Supplementary informatio
High-magnetic field phase diagram and failure of magnetic Gr\"uneisen scaling in LiFePO
We report the magnetic phase diagram of single-crystalline LiFePO in
magnetic fields up to 58~T and present a detailed study of magneto-elastic
coupling by means of high-resolution capacitance dilatometry. Large anomalies
at \tn\ in the thermal expansion coefficient imply pronounced
magneto-elastic coupling. Quantitative analysis yields the magnetic Gr\"uneisen
parameter ~mol/J. The positive
hydrostatic pressure dependence ~K/GPa is dominated
by uniaxial effects along the -axis. Failure of Gr\"uneisen scaling below
~K, i.e., below the peak temperature in the magneto-electric
coupling coefficient [\onlinecite{toft2015anomalous}], implies several
competing degrees of freedom and indicates relevance of recently observed
hybrid excitations~[\onlinecite{yiu2017hybrid}]. A broad and strongly
magnetic-field-dependent anomaly in in this temperature regime
highlight the relevance of structure changes. Upon application of magnetic
fields -axis, a pronounced jump in the magnetisation implies
spin-reorientation at ~T as well as a precursing phase at 29~T
and ~K. In a two-sublattice mean-field model, the saturation field
~T enables the determination of the effective
antiferromagnetic exchange interaction ~meV as well as
the anisotropies ~meV and ~meV
Direct observation of band-gap closure for a semiconducting carbon nanotube in a large parallel magnetic field
We have investigated the magnetoconductance of semiconducting carbon
nanotubes (CNTs) in pulsed, parallel magnetic fields up to 60 T, and report the
direct observation of the predicted band-gap closure and the reopening of the
gap under variation of the applied magnetic field. We also highlight the
important influence of mechanical strain on the magnetoconductance of the CNTs.Comment: 4 pages, 4 figure
Large zero-field cooled exchange-bias in bulk Mn2PtGa
We report a large exchange-bias (EB) effect after zero-field cooling the new
tetragonal Heusler compound Mn2PtGa from the paramagnetic state. The
first-principle calculation and the magnetic measurements reveal that Mn2PtGa
orders ferrimagnetically with some ferromagnetic (FM) inclusions. We show that
ferrimagnetic (FI) ordering is essential to isothermally induce the exchange
anisotropy needed for the zero-field cooled (ZFC) EB during the virgin
magnetization process. The complex magnetic behavior at low temperatures is
characterized by the coexistence of a field induced irreversible magnetic
behavior and a spin-glass-like phase. The field induced irreversibility
originates from an unusual first-order FI to antiferromagnetic transition,
whereas, the spin-glass like state forms due to the existence of anti-site
disorder intrinsic to the material.Comment: 5 pages, 4 figures, supplementary material included in a separate
file; accepted for publication in PR
Collinear order in a frustrated three-dimensional spin- antiferromagnet LiCuWO
Magnetic frustration in three dimensions (3D) manifests itself in the
spin- insulator LiCuWO. Density-functional band-structure
calculations reveal a peculiar spin lattice built of triangular planes with
frustrated interplane couplings. The saturation field of 29 T contrasts with
the susceptibility maximum at 8.5 K and a relatively low N\'eel temperature
K. Magnetic order below is collinear with the propagation
vector and an ordered moment of 0.65(4) according to
neutron diffraction data. This reduced ordered moment together with the low
maximum of the magnetic specific heat () pinpoint strong
magnetic frustration in 3D. Collinear magnetic order suggests that quantum
fluctuations play crucial role in this system, where a non-collinear spiral
state would be stabilized classically.Comment: published version with supplemental material merged into the tex
Frustration of square cupola in Sr(TiO)Cu(PO)
The structural and magnetic properties of the square-cupola antiferromagnet
Sr(TiO)Cu(PO) are investigated via x-ray diffraction,
magnetization, heat capacity, and P nuclear magnetic resonance
experiments on polycrystalline samples, as well as density-functional
band-structure calculations. The temperature-dependent unit cell volume could
be described well using the Debye approximation with the Debye temperature of
550~K. Magnetic response reveals a pronounced
two-dimensionality with a magnetic long-range-order below ~K. High-field magnetization exhibits a kink at of the saturation
magnetization. Asymmetric P NMR spectra clearly suggest strong in-plane
anisotropy in the magnetic susceptibility, as anticipated from the crystal
structure. From the P NMR shift vs bulk susceptibility plot, the
isotropic and axial parts of the hyperfine coupling between P nuclei and
the Cu spins are calculated to be and
~Oe/, respectively. The
low-temperature and low-field P NMR spectra indicate a commensurate
antiferromagnetic ordering. Frustrated nature of the compound is inferred from
the temperature-dependent P NMR spin-lattice relaxation rate and
confirmed by our microscopic analysis that reveals strong frustration of the
square cupola by next-nearest-neighbor exchange couplings.Comment: 11 pages, 13 figures, 1 table, Phys. Rev. B (Accepted, 2018
Direct measurements of the magnetocaloric effect in pulsed magnetic fields: The example of the Heusler alloy NiMnIn
We have studied the magnetocaloric effect (MCE) in the shape-memory Heusler
alloy NiMnIn by direct measurements in pulsed magnetic
fields up to 6 and 20 T. The results in 6 T are compared with data obtained
from heat-capacity experiments. We find a saturation of the inverse MCE,
related to the first-order martensitic transition, with a maximum adiabatic
temperature change of K at 250 K and a conventional
field-dependent MCE near the second-order ferromagnetic transition in the
austenitic phase. The pulsed magnetic field data allow for an analysis of the
temperature response of the sample to the magnetic field on a time scale of
to 100 ms which is on the order of typical operation frequencies (10
to 100 Hz) of magnetocaloric cooling devices. Our results disclose that in
shape-memory alloys the different contributions to the MCE and hysteresis
effects around the martensitic transition have to be carefully considered for
future cooling applications.Comment: 5 pages, 4 figure
Singlet ground state in the alternating spin- chain compound NaVOAsO
We present the synthesis and a detailed investigation of structural and
magnetic properties of polycrystalline NaVOAsO by means of x-ray
diffraction, magnetization, electron spin resonance (ESR), and As
nuclear magnetic resonance (NMR) measurements as well as density-functional
band structure calculations. Temperature-dependent magnetic susceptibility, ESR
intensity, and NMR line shift could be described well using an alternating
spin- chain model with the exchange coupling K and
an alternation parameter . From the high-field magnetic
isotherm measured at K, the critical field of the gap closing is found
to be T, which corresponds to the zero-field spin gap of
K. Both NMR shift and spin-lattice relaxation
rate show an activated behavior at low temperatures, further confirming the
singlet ground state. The spin chains do not coincide with the structural
chains, whereas the couplings between the spin chains are frustrated. Because
of a relatively small spin gap, NaVOAsO is a promising compound for further
experimental studies under high magnetic fields.Comment: 14 pages, 10 figures, 2 table
Huge First-Order Metamagnetic Transition in the Paramagnetic Heavy-Fermion System CeTiGe
We report on the observation of large, step-like anomalies in the
magnetization (\,/Ce), in the magnetostriction
(), and in the magnetoresistance in
polycrystals of the paramagnetic heavy-fermion system CeTiGe at a critical
magnetic field 12.5\,T at low temperatures. The size of
these anomalies is much larger than those reported for the prototypical
heavy-fermion metamagnet CeRuSi. Furthermore, hysteresis between
increasing and decreasing field data indicate a real thermodynamic, first-order
type of phase transition, in contrast to the crossover reported for
CeRuSi. Analysis of the resistivity data shows a pronounced decrease of
the electronic quasiparticle mass across . These results establish CeTiGe
as a new metamagnetic Kondo-lattice system, with an exceptionally large,
metamagnetic transition of first-order type at a moderate field.Comment: 5 pages, 4 figure
- …