4,110 research outputs found
Measurements of differential Z boson production cross sections in proton-proton collisions at s√ = 13 TeV
Search for a heavy Higgs boson decaying to a pair of W bosons in proton-proton collisions at √s = 13 TeV
Artículo escrito por un elevado número de autores, sólo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiera, y los autores pertenecientes a la UAMA search for a heavy Higgs boson in the mass range from 0.2 to 3.0 TeV, decaying to a pair of W bosons, is presented. The analysis is based on proton-proton collisions at √ s = 13 TeV recorded by the CMS experiment at the LHC in 2016, corresponding to an integrated luminosity of 35.9 fb−1. The W boson pair decays are reconstructed in the 2ℓ2ν and ℓν2q final states (with ℓ = e or μ). Both gluon fusion and vector boson fusion production of the signal are considered. Interference effects between the signal and background are also taken into account. The observed data are consistent with the standard model (SM) expectation. Combined upper limits at 95% confidence level on the product of the cross section and branching fraction exclude a heavy Higgs boson with SM-like couplings and decays up to 1870 GeV. Exclusion limits are also set in the context of a number of two-Higgs-doublet model formulations, further reducing the allowed parameter space for SM extensionsIndividuals have received support from the Marie-Curie programme and the European
Research Council and Horizon 2020 Grant, contract Nos. 675440, 752730, and 765710 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von
Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation `a la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap
voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and
FWO (Belgium) under the “Excellence of Science — EOS” — be.h project n. 30820817; the
Beijing Municipal Science & Technology Commission, No. Z181100004218003; the Ministry
of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy — EXC 2121 “Quantum Universe” — 390833306; the Lend¨ulet (“Momentum”) Programme and the J´anos Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program UNKP, the NKFIA research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Education, grant no. 3.2989.2017 (Russia); the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Nvidia Corporation; the Welch
Foundation, contract C-1845; and the Weston Havens Foundation (U.S.A.
Search for heavy neutrinos and third-generation leptoquarks in hadronic states of two τ leptons and two jets in proton-proton collisions at s√=13 TeV
Este artículo fue en colaboración con otras Universidades en la que participaron alrededor de 2300 autores.
Search for dark matter produced in association with a leptonically decaying Z boson in proton–proton collisions at √s = 13 TeV
Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UA
Performance of missing transverse momentum reconstruction in proton-proton collisions at root s=13 TeV using the CMS detector
Artículo escrito por un elevado número de autores. Solo se referencia el que aparece en primer lugar, el nombre del grupo de colaboración si hubiere y los autores pertenecientes a la UAMThe performance of missing transverse momentum (vec pTmiss) reconstruction algorithms for the CMS experiment is presented, using proton-proton collisions at a center-of-mass energy of 13 TeV, collected at the CERN LHC in 2016. The data sample corresponds to an integrated luminosity of 35.9 fb-1. The results include measurements of the scale and resolution of vec pTmiss, and detailed studies of events identified with anomalous vec pTmiss. The performance is presented of a vec pTmiss reconstruction algorithm that mitigates the effects of multiple proton-proton interactions, using the "pileup per particle identification" method. The performance is shown of an algorithm used to estimate the compatibility of the reconstructed vec pTmiss with the hypothesis that it originates from resolution effectsWe congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Secretariat for Higher Education, Science, Technology andInnovation, Ecuador; theMinistryofEducation and Research, Estonian ResearchCouncilviaIUT23-4andIUT23-6andEuropeanRegional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucléaire et de Physique des Particules / CNRS, and Commissariat à l’Énergie Atomique et aux Énergies Alternatives / CEA, France; the Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Research, Development and Innovation Fund, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea; the Lithuanian Academy of Sciences; the Ministry of Education, and University of Malaya (Malaysia); the Mexican Funding Agencies (BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundação para a Ciência e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretaría de Estado de Investigación, Desarrollo e Innovación, Programa Consolider-Ingenio 2010, Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016, Plan de Ciencia, Tecnología e Innovación 2013-2017 del Principado de Asturias and Fondo Europeo de Desarrollo Regional, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the National Academy of SciencesofUkraine, andStateFundforFundamentalResearches, Ukraine; theScienceandTechnology Facilities Council, U.K.; the US Department of Energy, and the US National Science Foundation. Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science — EOS” —be.h project n. 30820817; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Lendület (“Momentum”) Programme and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIA research grants 123842, 123959, 124845, 124850 and 125105 (Hungary); the Council of Scientific and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa de Excelencia María de Maeztu and the Programa Severo Ochoadel Principado de Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contract C-1845; and the Weston Havens Foundation (U.S.A.
Search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks in proton–proton collisions at √s = 13 TeV
Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMA search for dark matter produced in association
with a Higgs boson decaying to a pair of bottom quarks is
performed in proton–proton collisions at a center-of-mass
energy of 13 TeV collected with the CMS detector at the
LHC. The analyzed data sample corresponds to an integrated luminosity of 35.9 fb−1. The signal is characterized
by a large missing transverse momentum recoiling against
a bottom quark–antiquark system that has a large Lorentz
boost. The number of events observed in the data is consistent with the standard model background prediction. Results
are interpreted in terms of limits both on parameters of the
type-2 two-Higgs doublet model extended by an additional
light pseudoscalar boson a (2HDM+a) and on parameters of
a baryonic Z simplified model. The 2HDM+a model is tested
experimentally for the first time. For the baryonic Z model,
the presented results constitute the most stringent constraints
to dateFinally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie pro- gram and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science-EOS”—be.h project n. 30820817; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Lendület (“Momentum”) Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIA research grants 123842, 123959, 124845, 124850 and 125105 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Princi-pado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA
Search for resonant production of second-generation sleptons with same-sign dimuon events in proton–proton collisions at √s = 13 TeV
Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMA search is presented for resonant production
of second-generation sleptons (μL, νμ) via the R-parityviolating coupling λ
211 to quarks, in events with two samesign muons and at least two jets in the final state. The smuon
(muon sneutrino) is expected to decay into a muon and a neutralino (chargino), which will then decay into a second muon
and at least two jets. The analysis is based on the 2016 data set
of proton-proton collisions at √s = 13 TeV recorded with
the CMS detector at the LHC, corresponding to an integrated
luminosity of 35.9 fb−1. No significant deviation is observed
with respect to standard model expectations. Upper limits on
cross sections, ranging from 0.24 to 730 fb, are derived in
the context of two simplified models representing the dominant signal contributions leading to a same-sign muon pair.
The cross section limits are translated into coupling limits
for a modified constrained minimal supersymmetric model
with λ
211 as the only nonzero R-parity violating coupling.
The results significantly extend restrictions of the parameter
space compared with previous searches for similar modelsFinally, we
acknowledge the enduring support for the construction and operation of
the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq,
CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador);
MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC,
and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG,
and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and
DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF
(Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM
(Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLPFAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna);
MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka);
Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter,
IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey);
NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF
(USA). Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant,
contract No. 675440 (European Union); the Leventis Foundation; the
A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the
Belgian Federal Science Policy Office; the Fonds pour la Formation à
la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium);
the Agentschap voor Innovatie door Wetenschap en Technologie (IWTBelgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence
of Science - EOS” - be.h project n. 30820817; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Lendület
(“Momentum”) Programme and the János Bolyai Research Scholarship
of the Hungarian Academy of Sciences, the New National Excellence
Program ÚNKP, the NKFIA research grants 123842, 123959, 124845,
124850 and 125105 (Hungary); the Council of Science and Industrial
Research, India; the HOMING PLUS programme of the Foundation
for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543,
2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/
E/ST2/01406; the National Priorities Research Program by Qatar
National Research Fund; the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant
MDM-2015-0509 and the Programa Severo Ochoa del Principado de
Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF
and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral
Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand);
the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA
Measurement of the energy density as a function of pseudorapidity in proton–proton collisions at √s = 13 TeV
Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMA measurement of the energy density in proton–
proton collisions at a centre-of-mass energy of √s = 13 TeV
is presented. The data have been recorded with the CMS
experiment at the LHC during low luminosity operations in
2015. The energy density is studied as a function of pseudorapidity in the ranges − 6.6 <η< − 5.2 and 3.15 < |η| <
5.20. The results are compared with the predictions of several
models. All the models considered suggest a different shape
of the pseudorapidity dependence compared to that observed
in the data. A comparison with LHC proton–proton collision
data at √s = 0.9 and 7 TeV confirms the compatibility of
the data with the hypothesis of limiting fragmentationFinally, we
acknowledge the enduring support for the construction and operation of
the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq,
CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria);
CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador);
MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC,
and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG,
and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and
DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF
(Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM
(Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLPFAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna);
MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka);
Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter,
IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey);
NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF
(USA). Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant,
contract No. 675440 (European Union); the Leventis Foundation; the
A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the
Belgian Federal Science Policy Office; the Fonds pour la Formation à
la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium);
the Agentschap voor Innovatie door Wetenschap en Technologie (IWTBelgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence
of Science - EOS” - be.h project n. 30820817; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Lendület
(“Momentum”) Programme and the János Bolyai Research Scholarship
of the Hungarian Academy of Sciences, the New National Excellence
Program ÚNKP, the NKFIA research grants 123842, 123959, 124845,
124850 and 125105 (Hungary); the Council of Science and Industrial
Research, India; the HOMING PLUS programme of the Foundation
for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543,
2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis
2012/07/E/ST2/01406; the National Priorities Research Program by
Qatar National Research Fund; the Programa Estatal de Fomento de
la Investigación Científica y Técnica de Excelencia María de Maeztu,
grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programmes cofinanced by
EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn
Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contract C-1845; and the Weston Havens
Foundation (USA
Search for top quark partners with charge 5/3 in proton-proton collisions at s√=13 TeV
Este artículo fue en colaboración con otras Universidades en la que participaron alrededor de 2300 autores
Performance of the CMS muon trigger system in proton-proton collisions at √s = 13 TeV
Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMThe muon trigger system of the CMS experiment uses a combination of hardware and software to identify events containing a muon. During Run 2 (covering 2015-2018) the LHC achieved instantaneous luminosities as high as 2 × 10 cm s while delivering proton-proton collisions at √s = 13 TeV. The challenge for the trigger system of the CMS experiment is to reduce the registered event rate from about 40 MHz to about 1 kHz. Significant improvements important for the success of the CMS physics program have been made to the muon trigger system via improved muon reconstruction and identification algorithms since the end of Run 1 and throughout the Run 2 data-taking period. The new algorithms maintain the acceptance of the muon triggers at the same or even lower rate throughout the data-taking period despite the increasing number of additional proton-proton interactions in each LHC bunch crossing. In this paper, the algorithms used in 2015 and 2016 and their improvements throughout 2017 and 2018 are described. Measurements of the CMS muon trigger performance for this data-taking period are presented, including efficiencies, transverse momentum resolution, trigger rates, and the purity of the selected muon sample. This paper focuses on the single- and double-muon triggers with the lowest sustainable transverse momentum thresholds used by CMS. The efficiency is measured in a transverse momentum range from 8 to several hundred GeVIndividuals have received support from the Marie-Curie program and the European Research
Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, and 765710 (European
Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt
Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche
dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence
of Science — EOS” — be.h project n. 30820817; the Beijing Municipal Science & Technology
Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of
the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG), under Germany’s Excellence
Strategy — EXC 2121 “Quantum Universe” — 390833306, and under project number 400140256
- GRK2497; the Lendület (“Momentum”) Program and the János Bolyai Research Scholarship
of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIA research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058
(Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS program
of the Foundation for Polish Science, cofinanced from European Union, Regional Development
Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National
Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543,
2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Higher
Education, project no. 0723-2020-0041 (Russia); the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the
Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced
by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement
Project (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the
Welch Foundation, contract C-1845; and the Weston Havens Foundation (U.S.A.
- …