526 research outputs found
Quantum Computation by Adiabatic Evolution
We give a quantum algorithm for solving instances of the satisfiability
problem, based on adiabatic evolution. The evolution of the quantum state is
governed by a time-dependent Hamiltonian that interpolates between an initial
Hamiltonian, whose ground state is easy to construct, and a final Hamiltonian,
whose ground state encodes the satisfying assignment. To ensure that the system
evolves to the desired final ground state, the evolution time must be big
enough. The time required depends on the minimum energy difference between the
two lowest states of the interpolating Hamiltonian. We are unable to estimate
this gap in general. We give some special symmetric cases of the satisfiability
problem where the symmetry allows us to estimate the gap and we show that, in
these cases, our algorithm runs in polynomial time.Comment: 24 pages, 12 figures, LaTeX, amssymb,amsmath, BoxedEPS packages;
email to [email protected]
How many functions can be distinguished with k quantum queries?
Suppose an oracle is known to hold one of a given set of D two-valued
functions. To successfully identify which function the oracle holds with k
classical queries, it must be the case that D is at most 2^k. In this paper we
derive a bound for how many functions can be distinguished with k quantum
queries.Comment: 5 pages. Lower bound on sorting n items improved to (1-epsilon)n
quantum queries. Minor changes to text and corrections to reference
A context-free and a 1-counter geodesic language for a Baumslag-Solitar group
We give a language of unique geodesic normal forms for the Baumslag-Solitar
group BS(1,2) that is context-free and 1-counter. We discuss the classes of
context-free, 1-counter and counter languages, and explain how they are
inter-related
Intermediate problems in modular circuits satisfiability
In arXiv:1710.08163 a generalization of Boolean circuits to arbitrary finite
algebras had been introduced and applied to sketch P versus NP-complete
borderline for circuits satisfiability over algebras from congruence modular
varieties. However the problem for nilpotent (which had not been shown to be
NP-hard) but not supernilpotent algebras (which had been shown to be polynomial
time) remained open.
In this paper we provide a broad class of examples, lying in this grey area,
and show that, under the Exponential Time Hypothesis and Strong Exponential
Size Hypothesis (saying that Boolean circuits need exponentially many modular
counting gates to produce boolean conjunctions of any arity), satisfiability
over these algebras have intermediate complexity between and , where measures how much a nilpotent algebra
fails to be supernilpotent. We also sketch how these examples could be used as
paradigms to fill the nilpotent versus supernilpotent gap in general.
Our examples are striking in view of the natural strong connections between
circuits satisfiability and Constraint Satisfaction Problem for which the
dichotomy had been shown by Bulatov and Zhuk
- …