12 research outputs found

    Current Status of VHE Astronomy

    Get PDF
    Very-high-energy astronomy studies the Universe at energies between 30 GeV and 100 TeV. The past decade has seen enormous progress in this field. There are now at least seven known sources of VHE photons. By studying these objects in the VHE regime one can begin to understand the environments surrounding these objects, and how particle acceleration is realized in nature. In addition the photon beams from the extragalactic gamma-ray sources can be used to study the electromagnetic fields in the intervening space. This recent progress can be traced to the development of a new class of detector with the ability to differentiate between air showers produced by gamma rays and those produced by the much more numerous hadronic cosmic-ray background. Much more sensitive instruments are currently in the design phase and two new types of instruments are beginning to take data. In this paper we will discuss the physics of these sources and describe the existing and planned detectors.Comment: 7 pages, 3 figure

    Search for Short Duration Bursts of TeV Gamma Rays with the Milagrito Telescope

    Get PDF
    Abstract The Milagrito water Cherenkov telescope operated for over a year (2/97-5/98). The most probable gamma-ray energy was ~1 TeV and the trigger rate was as high as 400 Hz. Milagrito has opened a new window on the TeV Universe. We have developed an efficient technique for searching the entire sky for short duration bursts of TeV photons. Such bursts may result from "traditional" gamma-ray bursts that were not in the field-of-view of any other instruments, the evaporation of primordial black holes, or some as yet undiscovered phenomenon. We have begun to search the Milagrito data set for bursts of duration 10 seconds. Here we will present the technique and the expected results. Final results will be presented at the conference

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Monitoring the Northern Sky for Sources of TeV Gamma Rays

    No full text
    Abstract At the present time there are fewer then 10 confirmed sources of TeV gamma rays. While this lack of sources is partially due to the sensitivity of current instruments, it may also be due to the small field-of-view of current instruments coupled with the transient nature of astrophysical sources of TeV gamma rays. Milagro is a new type of extensive air shower array that uses water as the detecting medium and has the ability to continuously monitor the entire overhead sky for transient and steady sources of TeV gamma rays. Here the analysis of 2.4 years of data searching for steady TeV gamma-ray emission in the northern hemisphere is presented. Two sources have been detected: the Crab nebula and Mrk 421. A third region at a location of 79.44 ± 1.0 ra and 26.26 ± 0.7 declination is the third brightest region in the northern sky. After accounting for the trials associated with searching the entire northern hemisphere this region is not statistically significant. At the conference results from searches for transient emission on timescales of 1 week and greater will be presented

    Water Cherenkov technology in gamma-ray astrophysics

    Full text link

    The Future of LANSCE [Slides]

    No full text

    Large Area Networked Detectors for Particle Astrophysics

    No full text

    TeV ASTROPHYSICS WITH THE MILAGRO AND HAWC OBSERVATORIES

    Full text link
    Ground-based gamma-ray astronomy has historically implemented two dramatically different techniques. One method employs Imaging Atmospheric Cherenkov Telescope(s) (IACT) that detect the Cherenkov light generated in the atmosphere by extensive air showers. The other method employs particle detectors that directly detect the particles that reach ground level — known as Extensive Air Shower (EAS) arrays. Until recently, the IACT method had been the only technique to yield solid detections of TeV gamma-ray sources. Utilizing water Chernkov technology, Milagro, was the first EAS array to discover new gamma-ray sources and demonstrated the power of and need for an all-sky high duty cycle instrument in the TeV energy regime. The transient nature of many TeV sources, the enormous number of potential sources, and the existence of TeV sources that encompass large angular areas all point to the need for an all-sky, high duty-factor instrument with even greater sensitivity than Milagro. The High Altitude Water Cherenkov (HAWC) Observatory will be over an order of magnitude more sensitive than Milagro. In this paper we will discuss the results from Milagro and the design of the HAWC instrument and its experimental sensitivity. </jats:p

    Milagro: A low energy threshold extensive air shower array

    No full text

    The High-Altitude water cherenkov (HAWC) observatory in México: The primary detector

    No full text
    The High-Altitude Water Cherenkov (HAWC) observatory is a second-generation continuously operated, wide field-of-view, TeV gamma-ray observatory. The HAWC observatory and its analysis techniques build on experience of the Milagro experiment in using ground-based water Cherenkov detectors for gamma-ray astronomy. HAWC is located on the Sierra Negra volcano in México at an elevation of 4100 meters above sea level. The completed HAWC observatory principal detector (HAWC) consists of 300 closely spaced water Cherenkov detectors, each equipped with four photomultiplier tubes to provide timing and charge information to reconstruct the extensive air shower energy and arrival direction. The HAWC observatory has been optimized to observe transient and steady emission from sources of gamma rays within an energy range from several hundred GeV to several hundred TeV. However, most of the air showers detected are initiated by cosmic rays, allowing studies of cosmic rays also to be performed. This paper describes the characteristics of the HAWC main array and its hardware.UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Físic
    corecore