51 research outputs found

    Visualizing an Alternating Series

    Get PDF
    The author explores the convergence of an alternating series using a visual approach. Ideas for engaging students are provided along with a formal convergence proof

    Proof Without Words : The Sum of the First n Odd Integers is a Perfect Square

    Get PDF
    In this proof without words, we prove wordlessly the identity 1+3+5+...+(2n-1)=n^2

    The inside outs of AdS(3)/CFT(2): Exact AdS wormholes with entangled CFT duals

    Get PDF
    We present the complete family of solutions of 3D gravity (Lambda<0) with two asymptotically AdS exterior regions. The solutions are constructed from data at the two boundaries, which correspond to two independent and arbitrary stress tensors T_R, \bar T_R, and T_L, \bar T_L. The two exteriors are smoothly joined on to an interior region through a regular horizon. We find CFT duals of these geometries which are entangled states of two CFT's. We compute correlators between general operators at the two boundaries and find perfect agreement between CFT and bulk calculations. We calculate and match the CFT entanglement entropy (EE) with the holographic EE which involves geodesics passing through the wormhole. We also compute a holographic, non-equilibrium entropy for the CFT using properties of the regular horizon. The construction of the bulk solutions here uses an exact version of Brown-Henneaux type diffeomorphisms which are asymptotically nontrivial and transform the CFT states by two independent unitary operators on the two sides. Our solutions provide an infinite family of explicit examples of the ER=EPR relation of Maldacena and Susskind [arXiv:1306.0533].Comment: 27 pages + 10 pages of Appendix and references; (v2) title changed for clarity, typos fixed, references adde

    Higher-point conformal blocks and entanglement entropy in heavy states

    Full text link
    We consider conformal blocks of two heavy operators and an arbitrary number of light operators in a (1+1)-d CFT with large central charge. Using the monodromy method, these higher-point conformal blocks are shown to factorize into products of 4-point conformal blocks in the heavy-light limit for a class of OPE channels. This result is reproduced by considering suitable worldline configurations in the bulk conical defect geometry. We apply the CFT results to calculate the entanglement entropy of an arbitrary number of disjoint intervals for heavy states. The corresponding holographic entanglement entropy calculated via the minimal area prescription precisely matches these results from CFT. Along the way, we briefly illustrate the relation of these conformal blocks to Riemann surfaces and their associated moduli space.Comment: 41 pages, 10 figures. (Published version; typos corrected and references added.

    Dynamical entanglement entropy with angular momentum and U(1) charge

    Full text link
    We consider time-dependent entanglement entropy (EE) for a 1+1 dimensional CFT in the presence of angular momentum and U(1) charge. The EE saturates, irrespective of the initial state, to the grand canonical entropy after a time large compared with the length of the entangling interval. We reproduce the CFT results from an AdS dual consisting of a spinning BTZ black hole and a flat U(1) connection. The apparent discrepancy that the holographic EE does not a priori depend on the U(1) charge while the CFT EE does, is resolved by the charge-dependent shift between the bulk and boundary stress tensors. We show that for small entangling intervals, the entanglement entropy obeys the first law of thermodynamics, as conjectured recently. The saturation of the EE in the field theory is shown to follow from a version of quantum ergodicity; the derivation indicates that it should hold for conformal as well as massive theories in any number of dimensions.Comment: 22 pages, 4 figures; (v2) many comments added for better clarity; typos fixed; references adde

    Thermalization with chemical potentials, and higher spin black holes

    Get PDF
    We study the long time behaviour of local observables following a quantum quench in 1+1 dimensional conformal field theories possessing additional conserved charges besides the energy. We show that the expectation value of an arbitrary string of {\it local} observables supported on a finite interval exponentially approaches an equilibrium value. The equilibrium is characterized by a temperature and chemical potentials defined in terms of the quenched state. For an infinite number of commuting conserved charges, the equilibrium ensemble is a generalized Gibbs ensemble (GGE). We compute the thermalization rate in a systematic perturbation in the chemical potentials, using a new technique to sum over an infinite number of Feynman diagrams. The above technique also allows us to compute relaxation times for thermal Green's functions in the presence of an arbitrary number of chemical potentials. In the context of a higher spin (hs[\lambda]) holography, the partition function of the final equilibrium GGE is known to agree with that of a higher spin black hole. The thermalization rate from the CFT computed in our paper agrees with the quasinormal frequency of a scalar field in this black hole.Comment: 22 pages (+ 8 pages of appendix & refs), 4 figures; (v2) references added, notational simplification introduced in equations (63)-(65
    • …
    corecore