400 research outputs found
A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks
A better characterization of the early growth dynamics of an epidemic is
needed to dissect the important drivers of disease transmission. We introduce a
2-parameter generalized-growth model to characterize the ascending phase of an
outbreak and capture epidemic profiles ranging from sub-exponential to
exponential growth. We test the model against empirical outbreak data
representing a variety of viral pathogens and provide simulations highlighting
the importance of sub-exponential growth for forecasting purposes. We applied
the generalized-growth model to 20 infectious disease outbreaks representing a
range of transmission routes. We uncovered epidemic profiles ranging from very
slow growth (p=0.14 for the Ebola outbreak in Bomi, Liberia (2014)) to near
exponential (p>0.9 for the smallpox outbreak in Khulna (1972), and the 1918
pandemic influenza in San Francisco). The foot-and-mouth disease outbreak in
Uruguay displayed a profile of slower growth while the growth pattern of the
HIV/AIDS epidemic in Japan was approximately linear. The West African Ebola
epidemic provided a unique opportunity to explore how growth profiles vary by
geography; analysis of the largest district-level outbreaks revealed
substantial growth variations (mean p=0.59, range: 0.14-0.97). Our findings
reveal significant variation in epidemic growth patterns across different
infectious disease outbreaks and highlights that sub-exponential growth is a
common phenomenon. Sub-exponential growth profiles may result from
heterogeneity in contact structures or risk groups, reactive behavior changes,
or the early onset of interventions strategies, and consideration of
"deceleration parameters" may be useful to refine existing mathematical
transmission models and improve disease forecasts.Comment: 31 pages, 9 Figures, 1 Supp. Figure, 1 Table, final accepted version
(in press), Epidemics - The Journal on Infectious Disease Dynamics, 201
A comprehensive look at the covid-19 pandemic death toll
COVID-19 ‘excess mortality’ has been estimated for more than 100 countries and shows a dramatic death toll in many countries
Exploring the contribution of exposure heterogeneity to the the cessation of the 2014 Ebola epidemic
<div><p>The unexpected early cessation of the recent West Africa Ebola outbreak demonstrated shortcomings of popular forecasting approaches and has not been fully understood yet. A popular hypothesis is that public health interventions mitigated the spread, such as ETUs and safe burials. We investigate whether risk heterogeneity within the population could serve as an alternative explanation. We introduce a model for spread in heterogeneous host population that is particularly well suited for early predictions due to its simplicity and ease of application. Furthermore, we explore the conditions under which the observed epidemic trajectory can be explained without taking into account the effect of public health interventions. While the obtained fits closely match the total case count time series, closer inspection of sub-population results made us conclude that risk heterogeneity is unlikely to fully explain the early cessation of Ebola; other factors such as behavioral changes and other interventions likely played a major role. More accurate predictions in a future scenario require models that allow for early sub-exponential growth, as well as access to additional data on patient occupation (risk level) and location, to allow identify local phenomena that influence spreading behavior.</p></div
- …