5,300 research outputs found

    Distributed Maximum Likelihood Sensor Network Localization

    Full text link
    We propose a class of convex relaxations to solve the sensor network localization problem, based on a maximum likelihood (ML) formulation. This class, as well as the tightness of the relaxations, depends on the noise probability density function (PDF) of the collected measurements. We derive a computational efficient edge-based version of this ML convex relaxation class and we design a distributed algorithm that enables the sensor nodes to solve these edge-based convex programs locally by communicating only with their close neighbors. This algorithm relies on the alternating direction method of multipliers (ADMM), it converges to the centralized solution, it can run asynchronously, and it is computation error-resilient. Finally, we compare our proposed distributed scheme with other available methods, both analytically and numerically, and we argue the added value of ADMM, especially for large-scale networks

    Primal Recovery from Consensus-Based Dual Decomposition for Distributed Convex Optimization

    Get PDF
    Dual decomposition has been successfully employed in a variety of distributed convex optimization problems solved by a network of computing and communicating nodes. Often, when the cost function is separable but the constraints are coupled, the dual decomposition scheme involves local parallel subgradient calculations and a global subgradient update performed by a master node. In this paper, we propose a consensus-based dual decomposition to remove the need for such a master node and still enable the computing nodes to generate an approximate dual solution for the underlying convex optimization problem. In addition, we provide a primal recovery mechanism to allow the nodes to have access to approximate near-optimal primal solutions. Our scheme is based on a constant stepsize choice and the dual and primal objective convergence are achieved up to a bounded error floor dependent on the stepsize and on the number of consensus steps among the nodes

    Consistent Sensor, Relay, and Link Selection in Wireless Sensor Networks

    Full text link
    In wireless sensor networks, where energy is scarce, it is inefficient to have all nodes active because they consume a non-negligible amount of battery. In this paper we consider the problem of jointly selecting sensors, relays and links in a wireless sensor network where the active sensors need to communicate their measurements to one or multiple access points. Information messages are routed stochastically in order to capture the inherent reliability of the broadcast links via multiple hops, where the nodes may be acting as sensors or as relays. We aim at finding optimal sparse solutions where both, the consistency between the selected subset of sensors, relays and links, and the graph connectivity in the selected subnetwork are guaranteed. Furthermore, active nodes should ensure a network performance in a parameter estimation scenario. Two problems are studied: sensor and link selection; and sensor, relay and link selection. To solve such problems, we present tractable optimization formulations and propose two algorithms that satisfy the previous network requirements. We also explore an extension scenario: only link selection. Simulation results show the performance of the algorithms and illustrate how they provide a sparse solution, which not only saves energy but also guarantees the network requirements.Comment: 27 pages, 17 figure