10 research outputs found
Differential Proteomics of Urinary Exovesicles from Classical Galactosemic Patients Reveals Subclinical Kidney Insufficiency
Classical galactosemia is caused
by a nearly complete deficiency
of galactose-1-phosphate uridyltransferase (GALT; EC 2.7.712), resulting
in a severely impaired galactose metabolism with galactose-1-phosphate
and galactitol accumulation. Even on a galactose-restricted diet,
patients develop serious long-term complications of the central nervous
system and ovaries that may result from chronic cell-toxic effects
exerted by endogenous galactose. To address the question of whether
disease-associated cellular perturbations could affect the kidney
function of the patients, we performed differential proteomics of
detergent-resistant membranes from urinary exovesicles. Galactosemic
samples (showing drastic shifts from high-mannose to complex-type N-glycosylation on exosomal N-glycoproteins)
and healthy, sex-matched controls were analyzed in quadruplex iTRAQ
experiments performed in biological and technical replicates. Particularly
in the female patient group, the most striking finding was a drastic
increase of abundant serum (glyco)proteins, like albumin, leucine-rich
α-2-glycoprotein, fetuin, immunoglobulins, prostaglandin H2 d-isomerase, and α-1-microglobulin protein (AMBP), pointing
to a subclinical failure of kidney filter function in galactosemic
patients and resulting in a heavy overload of exosomal membranes with
adsorbed serum (glyco)proteins. Several of these proteins are connected
to TBMN and IgAN, proteinuria, and renal damage. The impairment of
renal protein filtration was also indicated by increased protein contents
derived from extracellular matrices and lysosomes
Differential Glycomics of Epithelial Membrane Glycoproteins from Urinary Exovesicles Reveals Shifts toward Complex-Type N-Glycosylation in Classical Galactosemia
A variety of genetic variations in the <i>galactose-1-phosphate uridyltransferase </i>(<i>GALT</i>) gene cause profound activity loss of the enzyme and acute toxic effects mediated by accumulating metabolic intermediates of galactose in newborns induced by dietary galactose. However, even on a severely galactose-restricted diet, patients develop serious long-term complications of the CNS and ovaries, which may result from damaging perturbations in cell biology caused by endogenously synthezised galactose. Under galactose stress, the cosubstrate of GALT, galactose-1-phosphate, accumulates and disturbs catabolic and anabolic pathways of the carbohydrate metabolism with potential effects on protein glycosylation and membrane localization of glycoprotein receptors, like the epidermal growth factor receptor. To address this issue in view of a cellular pathomechanism, we performed a differential semiquantitative N-glycomics study of membrane proteins. A suitable noninvasive cellular material derived from epithelial plasma membranes was found in urinary exovesicles and in the shed Tamm–Horsfall protein. By applying matrix-assisted laser ionization mass spectrometry on permethylated, PNGaseF released N-glycans, we demonstrate that GALT deficiency is associated with dramatic shifts from prevalent high-mannose-type glycans found in healthy subjects toward complex-type N-linked glycosylation in patients. These N-glycosylation shifts were observed on exosomal N-glycoproteins but not on the Tamm–Horsfall glycoprotein, which showed predominant high-mannose-type glycosylation with M6
Differential Glycomics of Epithelial Membrane Glycoproteins from Urinary Exovesicles Reveals Shifts toward Complex-Type N-Glycosylation in Classical Galactosemia
A variety of genetic variations in the <i>galactose-1-phosphate uridyltransferase </i>(<i>GALT</i>) gene cause profound activity loss of the enzyme and acute toxic effects mediated by accumulating metabolic intermediates of galactose in newborns induced by dietary galactose. However, even on a severely galactose-restricted diet, patients develop serious long-term complications of the CNS and ovaries, which may result from damaging perturbations in cell biology caused by endogenously synthezised galactose. Under galactose stress, the cosubstrate of GALT, galactose-1-phosphate, accumulates and disturbs catabolic and anabolic pathways of the carbohydrate metabolism with potential effects on protein glycosylation and membrane localization of glycoprotein receptors, like the epidermal growth factor receptor. To address this issue in view of a cellular pathomechanism, we performed a differential semiquantitative N-glycomics study of membrane proteins. A suitable noninvasive cellular material derived from epithelial plasma membranes was found in urinary exovesicles and in the shed Tamm–Horsfall protein. By applying matrix-assisted laser ionization mass spectrometry on permethylated, PNGaseF released N-glycans, we demonstrate that GALT deficiency is associated with dramatic shifts from prevalent high-mannose-type glycans found in healthy subjects toward complex-type N-linked glycosylation in patients. These N-glycosylation shifts were observed on exosomal N-glycoproteins but not on the Tamm–Horsfall glycoprotein, which showed predominant high-mannose-type glycosylation with M6
Differential Glycomics of Epithelial Membrane Glycoproteins from Urinary Exovesicles Reveals Shifts toward Complex-Type N-Glycosylation in Classical Galactosemia
A variety of genetic variations in the <i>galactose-1-phosphate uridyltransferase </i>(<i>GALT</i>) gene cause profound activity loss of the enzyme and acute toxic effects mediated by accumulating metabolic intermediates of galactose in newborns induced by dietary galactose. However, even on a severely galactose-restricted diet, patients develop serious long-term complications of the CNS and ovaries, which may result from damaging perturbations in cell biology caused by endogenously synthezised galactose. Under galactose stress, the cosubstrate of GALT, galactose-1-phosphate, accumulates and disturbs catabolic and anabolic pathways of the carbohydrate metabolism with potential effects on protein glycosylation and membrane localization of glycoprotein receptors, like the epidermal growth factor receptor. To address this issue in view of a cellular pathomechanism, we performed a differential semiquantitative N-glycomics study of membrane proteins. A suitable noninvasive cellular material derived from epithelial plasma membranes was found in urinary exovesicles and in the shed Tamm–Horsfall protein. By applying matrix-assisted laser ionization mass spectrometry on permethylated, PNGaseF released N-glycans, we demonstrate that GALT deficiency is associated with dramatic shifts from prevalent high-mannose-type glycans found in healthy subjects toward complex-type N-linked glycosylation in patients. These N-glycosylation shifts were observed on exosomal N-glycoproteins but not on the Tamm–Horsfall glycoprotein, which showed predominant high-mannose-type glycosylation with M6
Differential Glycomics of Epithelial Membrane Glycoproteins from Urinary Exovesicles Reveals Shifts toward Complex-Type N-Glycosylation in Classical Galactosemia
A variety of genetic variations in the <i>galactose-1-phosphate uridyltransferase </i>(<i>GALT</i>) gene cause profound activity loss of the enzyme and acute toxic effects mediated by accumulating metabolic intermediates of galactose in newborns induced by dietary galactose. However, even on a severely galactose-restricted diet, patients develop serious long-term complications of the CNS and ovaries, which may result from damaging perturbations in cell biology caused by endogenously synthezised galactose. Under galactose stress, the cosubstrate of GALT, galactose-1-phosphate, accumulates and disturbs catabolic and anabolic pathways of the carbohydrate metabolism with potential effects on protein glycosylation and membrane localization of glycoprotein receptors, like the epidermal growth factor receptor. To address this issue in view of a cellular pathomechanism, we performed a differential semiquantitative N-glycomics study of membrane proteins. A suitable noninvasive cellular material derived from epithelial plasma membranes was found in urinary exovesicles and in the shed Tamm–Horsfall protein. By applying matrix-assisted laser ionization mass spectrometry on permethylated, PNGaseF released N-glycans, we demonstrate that GALT deficiency is associated with dramatic shifts from prevalent high-mannose-type glycans found in healthy subjects toward complex-type N-linked glycosylation in patients. These N-glycosylation shifts were observed on exosomal N-glycoproteins but not on the Tamm–Horsfall glycoprotein, which showed predominant high-mannose-type glycosylation with M6
Cell culture‐derived extracellular vesicles: Considerations for reporting cell culturing parameters
Cell culture‐conditioned medium (CCM) is a valuable source of extracellular vesicles (EVs) for basic scientific, therapeutic and diagnostic applications. Cell culturing parameters affect the biochemical composition, release and possibly the function of CCM‐derived EVs (CCM‐EV). The CCM‐EV task force of the Rigor and Standardization Subcommittee of the International Society for Extracellular Vesicles aims to identify relevant cell culturing parameters, describe their effects based on current knowledge, recommend reporting parameters and identify outstanding questions. While some recommendations are valid for all cell types, cell‐specific recommendations may need to be established for non‐mammalian sources, such as bacteria, yeast and plant cells. Current progress towards these goals is summarized in this perspective paper, along with a checklist to facilitate transparent reporting of cell culturing parameters to improve the reproducibility of CCM‐EV research.</p
Supplementary information files for Cell culture-derived extracellular vesicles: Considerations for reporting cell culturing parameters
Supplementary files for article Cell culture-derived extracellular vesicles: Considerations for reporting cell culturing parametersCell culture‐conditioned medium (CCM) is a valuable source of extracellular vesicles (EVs) for basic scientific, therapeutic and diagnostic applications. Cell culturing parameters affect the biochemical composition, release and possibly the function of CCM‐derived EVs (CCM‐EV). The CCM‐EV task force of the Rigor and Standardization Subcommittee of the International Society for Extracellular Vesicles aims to identify relevant cell culturing parameters, describe their effects based on current knowledge, recommend reporting parameters and identify outstanding questions. While some recommendations are valid for all cell types, cell‐specific recommendations may need to be established for non‐mammalian sources, such as bacteria, yeast and plant cells. Current progress towards these goals is summarized in this perspective paper, along with a checklist to facilitate transparent reporting of cell culturing parameters to improve the reproducibility of CCM‐EV research.</p
Cell culture‐derived extracellular vesicles: Considerations for reporting cell culturing parameters
Cell culture‐conditioned medium (CCM) is a valuable source of extracellular vesicles (EVs) for basic scientific, therapeutic and diagnostic applications. Cell culturing parameters affect the biochemical composition, release and possibly the function of CCM‐derived EVs (CCM‐EV). The CCM‐EV task force of the Rigor and Standardization Subcommittee of the International Society for Extracellular Vesicles aims to identify relevant cell culturing parameters, describe their effects based on current knowledge, recommend reporting parameters and identify outstanding questions. While some recommendations are valid for all cell types, cell‐specific recommendations may need to be established for non‐mammalian sources, such as bacteria, yeast and plant cells. Current progress towards these goals is summarized in this perspective paper, along with a checklist to facilitate transparent reporting of cell culturing parameters to improve the reproducibility of CCM‐EV research.</p
Cell culture‐derived extracellular vesicles: Considerations for reporting cell culturing parameters
Cell culture‐conditioned medium (CCM) is a valuable source of extracellular vesicles (EVs) for basic scientific, therapeutic and diagnostic applications. Cell culturing parameters affect the biochemical composition, release and possibly the function of CCM‐derived EVs (CCM‐EV). The CCM‐EV task force of the Rigor and Standardization Subcommittee of the International Society for Extracellular Vesicles aims to identify relevant cell culturing parameters, describe their effects based on current knowledge, recommend reporting parameters and identify outstanding questions. While some recommendations are valid for all cell types, cell‐specific recommendations may need to be established for non‐mammalian sources, such as bacteria, yeast and plant cells. Current progress towards these goals is summarized in this perspective paper, along with a checklist to facilitate transparent reporting of cell culturing parameters to improve the reproducibility of CCM‐EV research.</p
Mutation ofPOC1Bina severe syndromic retinal ciliopathy
We describe a consanguineous Iraqi family with Leber congenital amaurosis (LCA),Joubert syndrome (JBTS), and polycystic kidney disease. Targeted NGS for excluding mutations in known LCA and JBTS genes, homozygosity mapping and whole-exome sequencing identified a homozygous missense variant, c.317G>C (p.Arg106Pro), in POC1B,a gene essential for ciliogenesis, basal body and centrosome integrity. Insilico modeling suggested a requirement of p.Arg106for formation of the third WD40 repeat and a protein interaction interface. In human and mouse retina, POC1B localized to the basal body and centriole adjacent to the connecting cilium of photoreceptors and in synapses of the outer plexiform layer. Knockdown of Poc1b in zebrafish caused cystic kidneys and retinal degeneration with shortened and reduced photoreceptor connecting cilia, compatible with the human syndromic ciliopathy. A recent study describes homozygosity for p.Arg106Pro[subscript POC1]B in a family with non-syndromic cone-rod dystrophy. The phenotype associated with homozygous p.Arg106Pro[subscript POC1]B may thus be highly variable, analogous to homozygous p.Leu710Ser inWDR19 causing either isolated retinitis pigmentosa or Jeune syndrome. Our study indicates that POC1B is required for retinal integrity, and we propose POC1B mutations as a probable cause for JBTS with severe polycystic kidney disease