123 research outputs found
Cold fronts in galaxy clusters
Cold fronts have been observed in a large number of galaxy clusters.
Understanding their nature and origin is of primary importance for the
investigation of the internal dynamics of clusters. To gain insight on the
nature of these features, we carry out a statistical investigation of their
occurrence in a sample of galaxy clusters observed with XMM-Newton and we
correlate their presence with different cluster properties. We have selected a
sample of 45 clusters starting from the B55 flux limited sample by Edge et al.
(1990) and performed a systematic search of cold fronts. We find that a large
fraction of clusters host at least one cold front. Cold fronts are easily
detected in all systems that are manifestly undergoing a merger event in the
plane of the sky while the presence of such features in the remaining clusters
is related to the presence of a steep entropy gradient, in agreement with
theoretical expectations. Assuming that cold fronts in cool core clusters are
triggered by minor merger events, we estimate a minimum of 1/3 merging events
per halo per Gyr.Comment: Accepted for publication in Astronomy & Astrophysics. Version with
full resolution figures available at:
http://www.iasf-milano.inaf.it/~simona/pub/coldfronts/ghizzardi.pd
ROSAT observations of radio-selected BL Lac objects
ROSAT observations of a homogeneous sample of radio--selected BL Lac objects
are presented. Results of a detailed spectral analysis in the soft 0.1-2.0 keV
energy range are discussed and compared with similar previously published
results. The X--ray spectral shape is discussed in relation to the overall
energy distribution with particular emphasys on the high energy gamma--ray
emission recently detected by CGRO--EGRET for about half of the objects in the
sample. Dividing the objects in our sample on the basis of the radio to X--ray
flux ratio (alpha_rx) we show that objects with alpha_rx > 0.75 have flatter
X--ray spectra and are likely to be stronger gamma--ray emitters than objects
with alpha_rx < 0.75. Moreover we note that the value of the peak energy of the
synchrotron component, in a E * F(E) plot, correlates with alpha_rx and
alpha_x.Comment: to appear on MNRAS, 18 pages (latex file plus 5 tables and 3 figures)
uuencoded compressed tar postscript file
Metal distribution in sloshing galaxy clusters: the case of A496
We report results from a detailed study of the sloshing gas in the core of
A496. We detect the low temperature/entropy spiral feature found in several
cores, we also find that conduction between the gas in the spiral and the
ambient medium must be suppressed by more than one order of magnitude with
respect to Spitzer conductivity. Intriguingly, while the gas in the spiral
features a higher metal abundance than the surrounding medium, it follows the
entropy vs metal abundance relation defined by gas lying outside the spiral.
The most plausible explanation for this behavior is that the low entropy metal
rich plasma uplifted through the cluster atmosphere by sloshing, suffers little
heating or mixing with the ambient medium. While sloshing appears to be capable
of uplifting significant amounts of gas, the limited heat exchange and mixing
between gas in and outside the spiral implies that this mechanism is not at all
effective in: 1) permanently redistributing metals within the core region and
2) heating up the coolest and densest gas, thereby providing little or no
contribution to staving of catastrophic cooling in cool cores.Comment: Accepted for publication on A&
Self-similarity of temperature profiles in distant galaxy clusters: the quest for a Universal law
We present the XMM-Newton temperature profiles of 12 bright clusters of
galaxies at 0.4<z<0.9, with 5<kT<11 keV. The normalized temperature profiles
(normalized by the mean temperature T500) are found to be generally
self-similar. The sample was subdivided in 5 cool-core (CC) and 7 non cool-core
(NCC) clusters, by introducing a pseudo-entropy ratio
sigma=(T_IN/T_OUT)X(EM_IN/EM_OUT)^-1/3 and defining the objects with sigma<0.6
as CC clusters and those with sigma>=0.6 as NCC clusters. The profiles of CC
and NCC clusters differ mainly in the central regions, with the latters
exhibiting a marginally flatter central profile. A significant dependence of
the temperature profiles on the pseudo-entropy ratio sigma is detected by
fitting a function of both r and sigma, showing an indication that the outer
part of the profiles becomes steeper for higher values of sigma (i.e.
transitioning towards the NCC clusters). No significant evidence of redshift
evolution could be found within the redshift range sampled by our clusters
(0.4<z<0.9). A comparison of our high-z sample with intermediate clusters at
0.1<z<0.3, showed how both the CC and NCC clusters temperature profiles have
experienced some sort of evolution. This can be due by the fact that higher z
clusters are at less advanced stage of their formation and did not have enough
time to create a relaxed structure, characterized by a central temperature dip
in CC clusters and by flatter profiles in NCC clusters. This is the first time
that a systematic study of the temperature profiles of galaxy clusters at z>0.4
has been attempted, as we were able to define the closest possible relation to
a Universal law for the temperature profiles of galaxy clusters at 0.1<z<0.9,
showing a dependence on both the state of relaxation of the clusters and the
redshift.Comment: 14 pages, 8 figures, A&A in press, minor changes (language editing
- …