160 research outputs found
Tunable Field Induced Superconductivity
We investigate the transport properties of a thin superconducting Al layer
covering a square array of magnetic dots with out-of-plane magnetization. A
thorough characterization of the magnetic properties of the dots allowed us to
fine-tune their magnetic state at will, hereby changing the influence of the
dots on the superconductor in a continuous way. We show that even though the
number of vortex-antivortex pairs discretely increases with increasing the
magnetization of the dots, no corresponding discontinuity is observed in the
resistance of the sample. The evolution of the superconducting phase boundary
as the magnetic state of the dots is swept permits one to devise a fully
controllable and erasable field induced superconductor
Columnar defects acting as passive internal field detectors
We have studied the angular dependence of the irreversible magnetization of
several YBaCuO and 2H-NbSe single crystals with columnar
defects tilted off the c-axis. At high magnetic fields, the irreversible
magnetization exhibits a well known maximum when the applied
field is parallel to the tracks. As the field is decreased below , the peak shifts away from the tracks' direction toward either the
c-axis or the ab-planes. We demonstrate that this shift results from the
misalignment between the external and internal field directions due to the
competition between anisotropy and geometry effects.Comment: 5 figure
Tunable pinning in superconducting films with magnetic micro-loops
We study the flux pinning properties of superconductor/magnetic micro-rings
lattice hybrid structures. The used open triangular micromagnets represent an
eight-fold degree of freedom system, with six polarized and two flux-closure
possible states. By conveniently choosing the magnetic state of the underlying
rings it is possible to induce different pinning potentials. We show that the
magnetic vortex state with minimum stray field produces a weaker pinning in
comparison with the polarized states
Dynamic Regimes in Films with a Periodic Array of Antidots
We have studied the dynamic response of Pb thin films with a square array of
antidots by means of ac susceptibility chi(T,H) measurements. At low enough ac
drive amplitudes h, vortices moving inside the pinning potential give rise to a
frequency- and h-independent response together with a scarce dissipation. For
higher amplitudes, the average distance travelled by vortices surpasses the
pinning range and a critical state develops. We found that the boundary h*(H,T)
between these regimes smoothly decreases as T increases whereas a step-like
behavior is observed as a function of field. We demonstrate that these steps in
h*(H) arise from sharp changes in the pinning strength corresponding to
different vortex configurations. For a wide set of data at several fields and
temperatures in the critical state regime, we show that the scaling laws based
on the simple Bean model are satisfied.Comment: 7 pages, 5 figure
Flux pinning properties of superconductors with an array of blind holes
We performed ac-susceptibility measurements to explore the vortex dynamics
and the flux pinning properties of superconducting Pb films with an array of
micro-holes (antidots) and non-fully perforated holes (blind holes). A lower
ac-shielding together with a smaller extension of the linear regime for the
lattice of blind holes indicates that these centers provide a weaker pinning
potential than antidots. Moreover, we found that the maximum number of flux
quanta trapped by a pinning site, i.e. the saturation number ns, is lower for
the blind hole array.Comment: 6 figures, 6 page
Guided nucleation of superconductivity on a graded magnetic substrate
We demonstrate the controlled spatial nucleation of superconductivity in a
thin film deposited on periodic arrays of ferromagnetic dots with gradually
increasing diameter. The perpendicular magnetization of the dots induces
vortex-antivortex molecules in the sample, with the number of (anti)vortices
increasing with magnet size. The resulting gradient of antivortex density
between the dots predetermines local nucleation of superconductivity in the
sample as a function of the applied external field and temperature. In
addition, the compensation between the applied magnetic field and the
antivortices results in an unprecedented enhancement of the critical
temperature
On the origin of the reversed vortex ratchet motion
We experimentally demonstrate that the origin of multiply reversed rectified
vortex motion in an asymmetric pinning landscape is a consequence not only of
the vortex-vortex interactions but also essentially depends on the ratio
between the characteristic interaction distance and the period of the
asymmetric pinning potential. Our system consists of an Al film deposited on
top of a square array of size-graded magnetic dots with a constant lattice
period a=2\mu m. Four samples with different periods of the size gradient d
were investigated. For large d the dc voltage Vdc recorded under a sinusoidal
ac excitation indicates that the average vortex drift is from bigger to smaller
dots for all explored positive fields. As d is reduced a series of sign
reversals in the dc response are observed as a function of field. We show that
the number of sign reversals increases as d decreases. These findings are in
agreement with recent computer simulations and illustrate the relevance of the
different characteristic lengths for the vortex rectification effects.Comment: accepted in Phys. Rev. Let
Magnetic dipole induced guided vortex motion
We present evidence of magnetically controlled guided vortex motion in a
hybrid superconductor/ferromagnet nanosystem consisting of an Al film on top of
a square array of permalloy square rings. When the rings are magnetized with an
in-plane external field H, an array of point-like dipoles with moments
antiparallel to H, is formed. The resulting magnetic template generates a
strongly anisotropic pinning potential landscape for vortices in the
superconducting layer. Transport measurements show that this anisotropy is able
to confine the flux motion along the high symmetry axes of the square lattice
of dipoles. This guided vortex motion can be either re-routed by 90 degrees by
simply changing the dipole orientation or even strongly suppressed by inducing
a flux-closure magnetic state with very low stray fields in the rings.Comment: 5 pages, 3 figure
Speed limit to the Abrikosov lattice in mesoscopic superconductors
We study the instability of the superconducting state in a mesoscopic
geometry for the low pinning material MoGe characterized by a large
Ginzburg-Landau parameter. We observe that in the current driven switching to
the normal state from a nonlinear region of the Abrikosov flux flow, the mean
critical vortex velocity reaches a limiting maximum velocity as a function of
the applied magnetic field. Based on time dependent Ginzburg-Landau simulations
we argue that the observed behavior is due to the high velocity vortex dynamics
confined on a mesoscopic scale. We build up a general phase diagram which
includes all possible dynamic configurations of Abrikosov lattice in a
mesoscopic superconductor.Comment: 7 pages, 6 figure
Enhanced pinning and proliferation of matching effects in a superconducting film with a Penrose array of magnetic dots
The vortex dynamics in superconducting films deposited on top of a five-fold
Penrose array of magnetic dots is studied by means of transport measurements.
We show that in the low pinning regime (demagnetized dots) a few periodic and
aperiodic matching features coexist. In the strong pinning regime (magnetized
dots) a richer structure of unforeseen periodic and aperiodic vortex patterns
appear giving rise to a clear enhancement of the critical current in a broader
field range. Possible stable vortex configurations are determined by molecular
dynamics simulations
- …