158 research outputs found

    Switching waves in multi-level incoherently driven polariton condensates

    Full text link
    We show theoretically that an open-dissipative polariton condensate confined within a trapping potential and driven by an incoherent pumping scheme gives rise to bistability between odd and even modes of the potential. Switching from one state to the other can be controlled via incoherent pulsing which becomes an important step towards construction of low-powered opto-electronic devices. The origin of the effect comes from modulational instability between odd and even states of the trapping potential governed by the nonlinear polariton-polariton interactions

    Parity solitons in nonresonantly driven-dissipative condensate channels

    Full text link
    We study analytically and numerically the condensation of a driven-dissipative exciton-polariton system using symmetric nonresonant pumping geometries. We show that the lowest condensation threshold solution carries a definite parity as a consequence of the symmetric excitation profile. At higher pump intensities competition between the two parities can result in critical quenching of one and saturation of the other. Using long pump channels, we show that the competition of the condensate parities gives rise to a different type of topologically stable defect propagating indefinitely along the condensate. The defects display repulsive interactions and are characterized by a sustained wavepacket carrying a pair of opposite parity domain walls in the condensate channel

    Time-Delay Polaritonics

    Full text link
    Non-linearity and finite signal propagation speeds are omnipresent in nature, technologies, and real-world problems, where efficient ways of describing and predicting the effects of these elements are in high demand. Advances in engineering condensed matter systems, such as lattices of trapped condensates, have enabled studies on non-linear effects in many-body systems where exchange of particles between lattice nodes is effectively instantaneous. Here, we demonstrate a regime of macroscopic matter-wave systems, in which ballistically expanding condensates of microcavity exciton-polaritons act as picosecond, microscale non-linear oscillators subject to time-delayed interaction. The ease of optical control and readout of polariton condensates enables us to explore the phase space of two interacting condensates up to macroscopic distances highlighting its potential in extended configurations. We demonstrate deterministic tuning of the coupled-condensate system between fixed point and limit cycle regimes, which is fully reproduced by time-delayed coupled equations of motion similar to the Lang-Kobayashi equation

    Enhanced coupling between ballistic exciton-polariton condensates through tailored pumping

    Full text link
    We propose a method to enhance the spatial coupling between ballistic exciton-polariton condensates in a semiconductor microcavity based on available spatial light modulator technologies. Our method, verified by numerically solving a generalized Gross-Pitaevskii model, exploits the strong nonequilibrium nature of exciton-polariton condensation driven by localized nonresonant optical excitation. Tailoring the excitation beam profile from a Gaussian into a polygonal shape results in refracted and focused radial streams of outflowing polaritons from the excited condensate which can be directed towards nearest neighbors. Our method can be used to lower the threshold power needed to achieve polariton condensation and increase spatial coherence in extended systems, paving the way towards creating extremely large-scale quantum fluids of light

    EDSOA: An Event-Driven Service-Oriented Architecture Model For Enterprise Applications

    Get PDF
    Enterprise Applications are difficult to implement and maintain because they require a monolith of code to incorporate required business processes. Service-oriented architecture is one solution, but challenges of dependency and software complexity remain. We propose Event-Driven Service-Oriented Architecture, which combines the benefits of component-based software development, event-driven architecture, and SOA

    Photonic Berry curvature in double liquid crystal microcavities with broken inversion symmetry

    Full text link
    We investigate a photonic device consisting of two coupled optical cavities possessing Rashba-Dresselhaus spin-orbit coupling, TE-TM splitting, and linear polarisation splitting that opens a tuneable energy gap at the diabolic points of the photon dispersion; giving rise to an actively addressable local Berry curvature. The proposed architecture stems from recent advancements in the design of artificial photonic gauge fields in liquid crystal cavities [K. Rechci\'{n}ska et al., Science 366, 727 (2019)]. Our study opens new perspectives for topological photonics, room-temperature spinoptronics, and studies on the quantum geometrical structure of photonic bands in extreme settings

    Vortex clusters in a stirred polariton condensate

    Full text link
    The response of superfluids to the external rotation, evidenced by emergence of quantised vortices, distinguishes them from conventional fluids. In this work, we demonstrate that the number of vortices in a stirred polariton condensate depends on the characteristic size of the employed rotating potential induced by the nonresonant laser excitation. For smaller sizes, a single vortex with a topological charge of +-1 corresponding to the stirring direction is formed. However, for larger optical traps, clusters of two or three co-rotating vortices appear in the narrow range of GHz stirring speed
    • …
    corecore