849 research outputs found
Flexible Stereo: Constrained, Non-rigid, Wide-baseline Stereo Vision for Fixed-wing Aerial Platforms
This paper proposes a computationally efficient method to estimate the
time-varying relative pose between two visual-inertial sensor rigs mounted on
the flexible wings of a fixed-wing unmanned aerial vehicle (UAV). The estimated
relative poses are used to generate highly accurate depth maps in real-time and
can be employed for obstacle avoidance in low-altitude flights or landing
maneuvers. The approach is structured as follows: Initially, a wing model is
identified by fitting a probability density function to measured deviations
from the nominal relative baseline transformation. At run-time, the prior
knowledge about the wing model is fused in an Extended Kalman filter~(EKF)
together with relative pose measurements obtained from solving a relative
perspective N-point problem (PNP), and the linear accelerations and angular
velocities measured by the two inertial measurement units (IMU) which are
rigidly attached to the cameras. Results obtained from extensive synthetic
experiments demonstrate that our proposed framework is able to estimate highly
accurate baseline transformations and depth maps.Comment: Accepted for publication in IEEE International Conference on Robotics
and Automation (ICRA), 2018, Brisban
Safe Local Exploration for Replanning in Cluttered Unknown Environments for Micro-Aerial Vehicles
In order to enable Micro-Aerial Vehicles (MAVs) to assist in complex,
unknown, unstructured environments, they must be able to navigate with
guaranteed safety, even when faced with a cluttered environment they have no
prior knowledge of. While trajectory optimization-based local planners have
been shown to perform well in these cases, prior work either does not address
how to deal with local minima in the optimization problem, or solves it by
using an optimistic global planner.
We present a conservative trajectory optimization-based local planner,
coupled with a local exploration strategy that selects intermediate goals. We
perform extensive simulations to show that this system performs better than the
standard approach of using an optimistic global planner, and also outperforms
doing a single exploration step when the local planner is stuck. The method is
validated through experiments in a variety of highly cluttered environments
including a dense forest. These experiments show the complete system running in
real time fully onboard an MAV, mapping and replanning at 4 Hz.Comment: Accepted to ICRA 2018 and RA-L 201
Nonlinear Model Predictive Control for Multi-Micro Aerial Vehicle Robust Collision Avoidance
Multiple multirotor Micro Aerial Vehicles sharing the same airspace require a
reliable and robust collision avoidance technique. In this paper we address the
problem of multi-MAV reactive collision avoidance. A model-based controller is
employed to achieve simultaneously reference trajectory tracking and collision
avoidance. Moreover, we also account for the uncertainty of the state estimator
and the other agents position and velocity uncertainties to achieve a higher
degree of robustness. The proposed approach is decentralized, does not require
collision-free reference trajectory and accounts for the full MAV dynamics. We
validated our approach in simulation and experimentally.Comment: Video available on: https://www.youtube.com/watch?v=Ot76i9p2ZZo&t=40
A New Method and Toolbox for Easily Calibrating Omnidirectional Cameras
In this paper, we focus on calibration of central omnidirectional cameras, both dioptric and catadioptric. We describe our novel camera model and algorithm and provide a practical Matlab Toolbox, which implements the proposed method. Our method relies on the use of a planar grid that is shown by the user at different unknown positions and orientations. The user is only asked to click on the corner points of the images of this grid. Then, calibration is quickly and automatically performed. In contrast with previous approaches, we do not use any specific model of the omnidirectional sensor. Conversely, we assume that the imaging function can be described by a polynomial approximation whose coefficients are estimated by solving a linear least squares minimization problem followed by a non-linear refinement. The performance of the approach is shown through several calibration experiments on both simulated and real data. The proposed algorithm is implemented as a Matlab Toolbox, which allows any inexpert user to easily calibrate his own camera. The toolbox is completely Open Source and is freely downloadable from the author's Web page
- …