404 research outputs found

    Far-infrared emission of massive stars

    Full text link
    We present results of the analysis of a sample of 22 stars of spectral types from O7 to B5 and luminosity classes I-V for which Spitzer/IRS spectra are available. The IRS spectra of these stars are examined for signs of excess infrared (IR) emission by comparison with stellar atmospheric spectra. We find that the spectra of half of the studied stars are dominated by excess emission in the far-IR, including all six super- and bright giants. In order to examine the origin of the far-IR excess, we supplement the Spitzer data with optical high-resolution echelle spectroscopy (λ/Δλ∼105\lambda/\Delta \lambda \sim 10^5), near-IR high-contrast coronagraphic imaging taken with the SPHERE instrument at VLT with a spatial resolution of 0.05", and WISE and Herschel photometry. In the optical region, we detect various absorption and emission lines (Hα\alpha, CIII, and NIII) irrespective of the far-IR excess. Pfund(α\alpha) and Humphrey(α\alpha) lines are observed at the same time as the far-IR excess. These lines are stronger in stars with far-IR excess than in stars without excess. A scattered-light disk in the central r < 2.5" region of the far-IR excess stars HD149404, HD151804, and HD154368 can be excluded from H band imaging down to a 1σ\sigma contrast of F(r)/F∗∼10−6F(r)/F_{*} \sim 10^{-6}. The far-IR excess is fit either by a free-free component from ionized gas as for the winds of hot stars or a large (1pc) circumstellar dust shell. The putative dust envelopes required to explain the excess have a visual extinction as low as a few hundred μ\mu-mag.Comment: A&A accepted, 10 pages, 6 Figures, HR spectra availabe at CD

    The Infrared Continuum Radiation of NGC1808 : A PAH and Polarisation Study

    Get PDF
    The paper is devoted to the understanding of the infrared emission of nuclear regions in galaxies. a) ISO data of NGC1808 are presented: spectro--photometry from 5.1 to 16.4 mic., a 25"x25" map at 6 mic. and 170mic. photometry. b) The data are complemented by a polarization measurement at 170 mic. (2.5+/-0.4% at position angle 94+/-5deg) and a map at 6 mic. In the map, the degree of polarisation goes up to 20% in the outer regions. We argue that the polarisation is produced by emission of big grains and exclude very small grains and PAHs or scattering and extinction. c) The mid infrared spectrum shows, beside the main emission bands, a so far unknown plateau of PAH features in the >13 mic.region. d) The total spectrum can be fit under the assumption of optically thin emission. However, such a model fails to reproduce the 25mic. point and implies that the mid infrared is due to very small grains and PAHs. These particles would then also have to be responsible for the 6 mic. polarisation, which is unlikely. e) To avoid these difficulties, we successfully turn to a radiative transfer model whose major feature is the existence of (hot spots) produced by the dust clouds around OB stars. We demonstrate the decisive influence on the mid infrared spectrum of both the PAHs and the hot spots.Comment: 11 pages, 6 figures, accepted by A&

    BD+30 3639: The Infrared Spectrum During Post-AGB Stellar Evolution

    Full text link
    We present a radiative-transfer calculation which reproduces the infrared spectrum of the planetary nebula BD~+30∘^{\circ}3639. We calculate the transfer process through absorption and scattering in a spherical-symmetric multi-grain dust shell. The emission of transiently heated particles is taken into account, as well as polycyclic aromatic hydrocarbons. We obtain an acceptable fit to most of the spectrum, including the PAH infrared bands. At submillimetre wavelengths the observed emission is larger than the model predicts, indicating that large dust conglomerates (``f{}luffy grains'') may be needed as an additional constituent. The fit favours a distance of ≥2 \ge 2 \,kpc, which implies that BD~+30∘^\circ3639 has evolved from a massive progenitor of several solar masses. A low dust-to-gas mass ratio is found in the ionised region. The calculations yield an original mass-loss rate of 2\times10^{-4} \msolar \peryr on the Asymptotic Giant Branch. Using this mass-loss rate, we calculate how the infrared spectrum has evolved during the post-AGB evolution. We show in particular the evolution of the IRAS colours during the preceding post-AGB evolution.Comment: accepted for publication in MNRAS. LaTeX, 15 pages, hardcopy and 8 figures available from [email protected] or [email protected]

    Dust in the diffuse interstellar medium: Extinction, emission, linear and circular polarisation

    Full text link
    We present a model for the diffuse interstellar dust that explains the observed wavelength-dependence of extinction, emission, linear and circular polarisation of light. The model is set-up with a small number of parameters. It consists of a mixture of amorphous carbon and silicate grains with sizes from the molecular domain of 0.5 up to about 500nm. Dust grains with radii larger than 6nm are spheroids. Spheroidal dust particles have a factor 1.5 - 3 larger absorption cross section in the far IR than spherical grains of the same volume. Mass estimates derived from submillimeter observations that ignore this effect are overestimated by the same amount. In the presence of a magnetic field, spheroids may be partly aligned and polarise light. We find that polarisation spectra help to determine the upper particle radius of the otherwise rather unconstrained dust size distribution. Stochastically heated small grains of graphite, silicates and polycyclic aromatic hydrocarbons (PAHs) are included. We tabulate parameters for PAH emission bands in various environments. They show a trend with the hardness of the radiation field that can be explained by the ionisation state or hydrogenation coverage of the molecules. For each dust component its relative weight is specified, so that absolute element abundances are not direct input parameters. The model is confronted with the average properties of the Milky Way, which seems to represent dust in the solar neighbourhood. It is then applied to four specific sight lines including the reflection nebula NGC2023. For these sight lines, we present linear and circular spectro-polarimetric observations obtained with FORS/VLT. Using prolate rather than oblate grains gives a better fit to observed spectra; the axial ratio of the spheroids is typically two and aligned silicates are the dominant contributor to the polarisation.Comment: accepted by A&A Edito

    Infrared Space Observatory Polarimetric Imaging of the Egg Nebula (RAFGL 2688)

    Get PDF
    We present polarimetric imaging of the protoplanetary nebula RAFGL 2688 obtained at 4.5 microns with the Infrared Space Observatory (ISO). We have deconvolved the images to remove the signature of the point spread function of the ISO telescope, to the extent possible. The deconvolved 4.5 micron image and polarimetric map reveal a bright point source with faint, surrounding reflection nebulosity. The reflection nebula is brightest to the north-northeast, in agreement with previous ground- and space-based infrared imaging. Comparison with previous near-infrared polarimetric imaging suggests that the polarization of starlight induced by the dust grains in RAFGL 2688 is more or less independent of wavelength between 2 microns and 4.5 microns. This, in turn, indicates that scattering dominates over thermal emission at wavelengths as long as ~5 microns, and that the dust grains have characteristic radii < 1 micron.Comment: 27 pages, 9 figures; to appear in the Astronomical Journal, May 2002 issu

    PAHs in protoplanetary disks: emission and X-ray destruction

    Full text link
    We study the PAH emission from protoplanetary disks. First, we discuss the dependence of the PAH band ratios on the hardness of the absorbed photons and the temperature of the stars. We show that the photon energy together with a varying degree of the PAH hydrogenation accounts for most of the observed PAH band ratios without the need to change the ionization degree of the molecules. We present an accurate treatment of stochastic heated grains in a vectorized three dimensional Monte Carlo dust radiative transfer code. The program is verified against results using ray tracing techniques. Disk models are presented for T Tauri and Herbig Ae stars. Particular attention is given to the photo-dissociation of the molecules. We consider beside PAH destruction also the survival of the molecules by vertical mixing within the disk. By applying typical X-ray luminosities the model accounts for the low PAH detection probability observed in T Tauri and the high PAH detection statistics found in Herbig Ae disks. Spherical halos above the disks are considered. We show that halos reduce the observed PAH band-to-continuum ratios when observed at high inclination. Finally, mid-IR images of disks around Herbig Ae disks are presented. We show that they are easier to resolve when PAH emission dominate.Comment: Accepted for publication in A&A. 10 pages, 7 figures, 2 tabl

    Polarization in Monte Carlo radiative transfer and dust scattering polarization signatures of spiral galaxies

    Get PDF
    Polarization is an important tool to further the understanding of interstellar dust and the sources behind it. In this paper we describe our implementation of polarization that is due to scattering of light by spherical grains and electrons in the dust Monte Carlo radiative transfer code SKIRT. In contrast to the implementations of other Monte Carlo radiative transfer codes, ours uses co-moving reference frames that rely solely on the scattering processes. It fully supports the peel-off mechanism that is crucial for the efficient calculation of images in 3D Monte Carlo codes. We develop reproducible test cases that push the limits of our code. The results of our program are validated by comparison with analytically calculated solutions. Additionally, we compare results of our code to previously published results. We apply our method to models of dusty spiral galaxies at near-infrared and optical wavelengths. We calculate polarization degree maps and show them to contain signatures that trace characteristics of the dust arms independent of the inclination or rotation of the galaxy

    Large Interstellar Polarisation Survey, II : UV/optical study of cloud-to-cloud variations of dust in the diffuse ISM

    Get PDF
    It is well known that the dust properties of the diffuse interstellar medium exhibit variations towards different sight-lines on a large scale. We have investigated the variability of the dust characteristics on a small scale, and from cloud-to-cloud. We use low-resolution spectro-polarimetric data obtained in the context of the Large Interstellar Polarisation Survey (LIPS) towards 59 sight-lines in the Southern Hemisphere, and we fit these data using a dust model composed of silicate and carbon particles with sizes from the molecular to the sub-micrometre domain. Large (>= 6 nm) silicates of prolate shape account for the observed polarisation. For 32 sight-lines we complement our data set with UVES archive high-resolution spectra, which enable us to establish the presence of single-cloud or multiple-clouds towards individual sight-lines. We find that the majority of these 35 sight-lines intersect two or more clouds, while eight of them are dominated by a single absorbing cloud. We confirm several correlations between extinction and parameters of the Serkowski law with dust parameters, but we also find previously undetected correlations between these parameters that are valid only in single-cloud sight-lines. We find that interstellar polarisation from multiple-clouds is smaller than from single-cloud sight-lines, showing that the presence of a second or more clouds depolarises the incoming radiation. We find large variations of the dust characteristics from cloud-to-cloud. However, when we average a sufficiently large number of clouds in single-cloud or multiple-cloud sight-lines, we always retrieve similar mean dust parameters. The typical dust abundances of the single-cloud cases are [C]/[H] = 92 ppm and [Si]/[H] = 20 ppm
    • …
    corecore