79 research outputs found

    DataSheet_1_Effects of biochar and arbuscular mycorrhizal fungi on winter wheat growth and soil N2O emissions in different phosphorus environments.docx

    No full text
    IntroductionPromoting crop growth and regulating denitrification process are two main ways to reduce soil N2O emissions in agricultural systems. However, how biochar and arbuscular mycorrhizal fungi (AMF) can regulate crop growth and denitrification in soils with different phosphorus (P) supplies to influence N2O emission remains largely unknown.MethodHere, an eight-week greenhouse and one-year field experiments biochar and/or AMF (only in greenhouse experiment) additions under low and high P environments were conducted to characterize the effects on wheat (Triticum aestivum L.) growth and N2O emission.ResultsWith low P supply, AMF addition decreased leaf Mn concentration (indicates carboxylate-releasing P-acquisition strategies), whereas biochar addition increased leaf Mn concentration, suggesting biochar and AMF addition regulated root morphological and physiological traits to capture P. Compared with low P supply, the high P significantly promoted wheat growth (by 16-34%), nutrient content (by 33-218%) and yield (by 33-41%), but suppressed soil N2O emissions (by 32-95%). Biochar and/or AMF addition exhibited either no or negative effects on wheat biomass and nutrient content in greenhouse, and biochar addition promoted wheat yield only under high P environment in field. However, biochar and/or AMF addition decreased soil N2O emissions by 24-93% and 32% in greenhouse and field experiments, respectively. This decrease was associated mainly with the diminished abundance of N2O-producing denitrifiers (nirK and nirS types, by 17-59%, respectively) and the increased abundance of N2O-consuming denitrifiers (nosZ type, by 35-65%), and also with the increased wheat nutrient content, yield and leaf Mn concentration.DiscussionThese findings suggest that strengthening the plant-soil-microbe interactions can mitigate soil N2O emissions via manipulating plant nutrient acquisition and soil denitrification.</p

    Variation law of bridge deck and air temperatures.

    No full text
    Variation law of bridge deck and air temperatures.</p

    Prediction error percentage of BP neural network.

    No full text
    Prediction error percentage of BP neural network.</p

    Classification criteria for valid sample grades.

    No full text
    Classification criteria for valid sample grades.</p

    Comparison of predicted and expected value of BP neural network.

    No full text
    Comparison of predicted and expected value of BP neural network.</p

    Schematic diagram of BP neural network topology.

    No full text
    Schematic diagram of BP neural network topology.</p

    Transcriptomic analysis of human endometrial stromal cells during early embryo invasion

    No full text
    During early embryo invasion (48 h after embryo attachment), what functional changes accompany dynamic gene expression alterations in human endometrial stromal cells? In the present study, primary human endometrial stromal cells (phESCs) were cultured. After in vitro decidualization, primary human endometrial stromal cells (phESCs) were cultured with blastocysts for 48 h. During this process, blastocysts attached and invaded the phESCs (embryo-invaded primary human endometrial stromal cells, ehESCs). We performed comprehensive transcriptomic profiling of phESCs (two replicates) and ehESCs (five replicates) and analyzed the differentially expressed gene (DEGs) sets for gene ontology (GO) terms and Kyoto encyclopaedia of genes and genomes (KEGG) pathway enrichment. To analyse potential connectivity patterns between the transcripts in these DEG sets, a protein-protein interaction (PPI) network was constructed using the STRING database. A total of 592 DEGs were identified between phESCs and ehESCs after embryo invasion. Primary human endometrial stromal cells underwent significant transcriptomic changes that occur in a stepwise fashion. Oxidative phosphorylation, mitochondrial organization, and P53 signalling pathways were significantly altered in phESCs after embryo invasion. EP300 may play a key role in regulating transcription via chromatin remodelling to facilitate the adaptive gene expression changes that occur during embryo invasion. Our data identify dynamic transcriptome changes that occur in endometrial stromal cells within 48 h after embryo invasion. The pathways that we found to be enriched in phESCs after embryo invasion (oxidative phosphorylation, mitochondrial organization, and P53 signalling) may represent novel mechanisms underlying embryo implantation, and may illuminate the reasons that some women experience reproductive failure.Key messagesHuman endometrial stromal cells have undergone changes in gene expression regulation and signalling pathways during the embryo invasion.Mitochondrial-oxidative phosphorylation changes in human stromal cells manifested as down-regulation of gene expression in the electron transport chain.TP53 signalling pathway and transcriptional regulator EP300 assist stromal cells to get adaptive changes during embryo invasion phase. Human endometrial stromal cells have undergone changes in gene expression regulation and signalling pathways during the embryo invasion. Mitochondrial-oxidative phosphorylation changes in human stromal cells manifested as down-regulation of gene expression in the electron transport chain. TP53 signalling pathway and transcriptional regulator EP300 assist stromal cells to get adaptive changes during embryo invasion phase.</p

    Pearson partial correlation analysis results.

    No full text
    Pearson partial correlation analysis results.</p

    Meteorological data of Tuhai River Bridge.

    No full text
    Meteorological data of Tuhai River Bridge.</p
    corecore