32,946 research outputs found

    Constraints on jet formation mechanisms with the most energetic giant outbursts in MS 0735+7421

    Full text link
    Giant X-ray cavities lie in some active galactic nuclei (AGNs) locating in central galaxies of clusters, most of these cavities are thought to be inflated by jets of AGNs. The jets can be either powered by rotating black holes or the accretion disks surrounding black holes, or both. In this work, we choose the most energetic cavity, MS 0735+7421, with stored energy ~ 10^62 erg, to constrain the jet formation mechanisms and the evolution of the central massive black hole in this source. The bolometric luminosity of the AGN in this cavity is ~ 10^(-5) L_Edd, however, the mean power of the jet required to inflate the cavity is estimated as ~ 0.02 L_Edd, which implies that the source has experienced strong outbursts previously. During outbursts, the jet power and the mass accretion rate should be significantly higher than its present values. We construct an accretion disk model, in which the angular momentum and energy carried away by jets is properly included, to calculate the spin and mass evolution of the massive black hole. In our calculations, different jet formation mechanisms are employed, and we find that the jets generated with the Blandford-Znajek (BZ) mechanism are unable to produce the giant cavity with ~ 10^62 erg in this source. Only the jets accelerated with the combination of the Blandford-Payne (BP) and BZ mechanisms can successfully inflate such a giant cavity, if the magnetic pressure is close to equipartition with the total (radiation+gas) pressure of the accretion disk. For dynamo generated magnetic field in the disk, such an energetic giant cavity can be inflated by the magnetically driven jets only if the initial black hole spin parameter a_0 > 0.95. Our calculations show that the final spin parameter a of the black hole is always ~ 0:9 - 0.998 for all the computational examples which can provide sufficient energy for the cavity of MS 0735+7421.Comment: 25 pages, 8 figures, accepted by Ap

    Quantum Clique Gossiping

    Full text link
    This paper establishes a framework for the acceleration of quantum gossip algorithms by introducing local clique operations to networks of interconnected qubits. Cliques are local structures in complex networks being complete subgraphs. Based on cyclic permutations, clique gossiping leads to collective multi-party qubit interactions. This type of algorithm can be physically realized by a series of local environments using coherent methods. First of all, we show that at reduced states, these cliques have the same acceleration effects as their roles in accelerating classical gossip algorithms, which can even make possible finite-time convergence for suitable network structures. Next, for randomized selection of cliques where node updates enjoy a more self-organized and scalable sequencing, we show that the rate of convergence is precisely improved by O(k/n)\mathcal{O}(k/n) at the reduced states, where kk is the size of the cliques and nn is the number of qubits in the network. The rate of convergence at the coherent states of the overall quantum network is proven to be decided by the spectrum of a mean-square error evolution matrix. Explicit calculation of such matrix is rather challenging, nonetheless, the effect of cliques on the coherent states' dynamics is illustrated via numerical examples. Interestingly, the use of larger quantum cliques does not necessarily increase the speed of the network density aggregation, suggesting quantum network dynamics is not entirely decided by its classical topology.Comment: 12 pages, 2 figure

    A strong negative correlation between radio loudness RUVR_{\rm UV} and optical-to-X-ray spectral index αox\alpha_{\rm ox} in low-luminosity AGNs

    Full text link
    It has been argued for years that the accretion mode changes from bright active galactic nuclei (AGNs) to low-luminosity AGNs (LLAGNs) at a rough dividing point of bolometric Eddington ratio λ∼10−2\lambda \sim 10^{-2}. In this work, we strengthen this scenario through investigation of the relationship between the radio loudness RUVR_{\rm UV} and the optical-to-X-ray spectral index αox\alpha_{\rm ox} in LLAGNs with 10−6≲λ≲10−310^{-6} \lesssim \lambda \lesssim 10^{-3}. We compile from literature a sample of 32 LLAGNs, consisting 18 LINERs and 14 low Eddington ratio Seyfert galaxies, and observe a strong negative RUVR_{\rm UV}--αox\alpha_{\rm ox} relationship, with large scatter in both RUVR_{\rm UV} and αox\alpha_{\rm ox}. We further demonstrate that this negative correlation, and the additional two negative relationships reported in literature (RUVR_{\rm UV}--λ\lambda and αox\alpha_{\rm ox}--λ\lambda correlations), can be understood consistently and comprehensively under the truncated accretion--jet model, the model that has been applied successfully applied to LLAGNs. We argue that the scatter in the observations are (mainly) due to the spread in the viscosity parameter α\alpha of a hot accretion flow, a parameter that potentially can serve as a diagnose of the strength and/or configuration of magnetic fields in accretion flows.Comment: 8 pages, 3 figures, 2 tables. Accepted by MNRA

    Impacts of different SNLS3 light-curve fitters on cosmological consequences of interacting dark energy models

    Full text link
    We explore the cosmological consequences of interacting dark energy (IDE) models using the SNLS3 supernova samples. In particular, we focus on the impacts of different SNLS3 light-curve fitters (LCF) (corresponding to "SALT2", "SiFTO", and "Combined" sample). Firstly, making use of the three SNLS3 data sets, as well as the Planck distance priors data and the galaxy clustering data, we constrain the parameter spaces of three IDE models. Then, we study the cosmic evolutions of Hubble parameter H(z)H(z), deceleration diagram q(z)q(z), statefinder hierarchy S3(1)(z)S^{(1)}_3(z) and S4(1)(z)S^{(1)}_4(z), and check whether or not these dark energy diagnosis can distinguish the differences among the results of different SNLS3 LCF. At last, we perform high redshift cosmic age test using three old high redshift objects (OHRO), and explore the fate of the Universe. We find that, the impacts of different SNLS3 LCF are rather small, and can not be distinguished by using H(z)H(z), q(z)q(z), S3(1)(z)S^{(1)}_3(z), S4(1)(z)S^{(1)}_4(z), and the age data of OHRO. In addition, we infer, from the current observations, how far we are from a cosmic doomsday in the worst case, and find that the "Combined" sample always gives the largest 2σ\sigma lower limit of the time interval between "big rip" and today, while the results given by the "SALT2" and the "SiFTO" sample are close to each other. These conclusions are insensitive to a specific form of dark sector interaction. Our method can be used to distinguish the differences among various cosmological observations.Comment: 12 pages, 7 figures, 2 tables, accepted for publication in Astronomy and Astrophysic
    • …
    corecore