11,310 research outputs found

    Holographic model of hybrid and coexisting s-wave and p-wave Josephson junction

    Get PDF
    In this paper the holographic model for hybrid and coexisting s-wave and p-wave Josephson junction is constructed by a triplet charged scalar field coupled with a non-Abelian SU(2)SU(2) gauge fields in (3+1)-dimensional AdS spacetime. Depending on the value of chemical potential μ\mu, one can show that there are four types of junctions (s+p-N-s+p, s+p-N-s, s+p-N-p and s-N-p). We show that DC current of all the hybrid and coexisting s-wave and p-wave junctions is proportional to the sine of the phase difference across the junction. In addition, the maximum current and the total condensation decays with the width of junction exponentially, respectively. For s+p-N-s and s-N-p junction, the maximum current decreases with growing temperature. Moreover, we find that the maximum current increases with growing temperature for s+p-N-s+p and s+p-N-p junction, which is in the different manner as the behaviour of s+p-N-s and s-N-p junction.Comment: 20 pages, 12 figures, v2: typos corrected, references added, published versio

    Non-perturbative Approach to Equation of State and Collective Modes of the QGP

    Get PDF
    We discuss a non-perturbative TT-matrix approach to investigate the microscopic structure of the quark-gluon plasma (QGP). Utilizing an effective Hamiltonian which includes both light- and heavy-parton degrees of freedoms. The basic two-body interaction includes color-Coulomb and confining contributions in all available color channels, and is constrained by lattice-QCD data for the heavy-quark free energy. The in-medium TT-matrices and parton spectral functions are computed selfconsistently with full account of off-shell properties encoded in large scattering widths. We apply the TT-matrices to calculate the equation of state (EoS) for the QGP, including a ladder resummation of the Luttinger-Ward functional using a matrix-log technique to account for the dynamical formation of bound states. It turns out that the latter become the dominant degrees of freedom in the EoS at low QGP temperatures indicating a transition from parton to hadron degrees of freedom. The calculated spectral properties of one- and two-body states confirm this picture, where large parton scattering rates dissolve the parton quasiparticle structures while broad resonances start to form as the pseudocritical temperature is approached from above. Further calculations of transport coefficients reveal a small viscosity and heavy-quark diffusion coefficient.Comment: 10 pages, 8 figures, proceedings of XLVII International Symposium on Multiparticle Dynamics (ISMD2017
    • …
    corecore