4 research outputs found

    Large transverse thermoelectric effect induced by the mixed-dimensionality of Fermi surfaces

    No full text
    Abstract Transverse thermoelectric effect, the conversion of longitudinal heat current into transverse electric current, or vice versa, offers a promising energy harvesting technology. Materials with axis-dependent conduction polarity, known as p × n-type conductors or goniopolar materials, are potential candidate, because the non-zero transverse elements of thermopower tensor appear under rotational operation, though the availability is highly limited. Here, we report that a ternary metal LaPt2B with unique crystal structure exhibits axis-dependent thermopower polarity, which is driven by mixed-dimensional Fermi surfaces consisting of quasi-one-dimensional hole sheet with out-of-plane velocity and quasi-two-dimensional electron sheets with in-plane velocity. The ideal mixed-dimensional conductor LaPt2B exhibits an extremely large transverse Peltier conductivity up to ∣α y x ∣ = 130 A K−1 m−1, and its transverse thermoelectric performance surpasses those of topological magnets utilizing the anomalous Nernst effect. These results thus manifest the mixed-dimensionality as a key property for efficient transverse thermoelectric conversion

    Clinical Application of Repetitive Peripheral Magnetic Stimulation in Rehabilitation

    No full text
    Repetitive peripheral magnetic stimulation (rPMS) is a noninvasive method involving the repetitive magnetic stimulation of peripheral nerves and muscles. Recently, its potential as a new neuromodulation technique for sensory motor disorders has been recognized. Its advantages include less pain than with electrical stimulation and that neuromuscular stimulation can be performed over clothing. These advantages make it a practical and straightforward adjunct tool widely used in clinical practice. In particular, the combination of rPMS and general rehabilitation reportedly promotes functional improvement in stroke patients with difficult involuntary contractions. This chapter reviews rPMS and its potential clinical applications in rehabilitation

    Potential Applications of Motor Imagery for Improving Standing Posture Balance in Rehabilitation

    No full text
    Improving standing posture balance is an essential role of rehabilitation to prevent falls in the elderly and stroke victims. Recently, motor imagery has been reported to be an effective method to improve standing posture balance. Motor imagery is a simulation of a movement in the brain without actual movement. Motor imagery is believed to have a common neural basis with actual movement and is effective in reconstructing motor functions. Recently, it has also been shown that motor imagery can be enhanced through use in combination with neuromodulation techniques. In this chapter, motor imagery contributing to the improvement of standing postural balance and its combination with neuromodulation techniques are reviewed

    Repetitive Peripheral Magnetic Stimulation Combined with Motor Imagery Changes Resting-State EEG Activity: A Randomized Controlled Trial

    No full text
    Repetitive peripheral magnetic stimulation is a novel non-invasive technique for applying repetitive magnetic stimulation to the peripheral nerves and muscles. Contrarily, a person imagines that he/she is exercising during motor imagery. Resting-state electroencephalography can evaluate the ability of motor imagery; however, the effects of motor imagery and repetitive peripheral magnetic stimulation on resting-state electroencephalography are unknown. We examined the effects of motor imagery and repetitive peripheral magnetic stimulation on the vividness of motor imagery and resting-state electroencephalography. The participants were divided into a motor imagery group and motor imagery and repetitive peripheral magnetic stimulation group. They performed 60 motor imagery tasks involving wrist dorsiflexion movement. In the motor imagery and repetitive peripheral magnetic stimulation group, we applied repetitive peripheral magnetic stimulation to the extensor carpi radialis longus muscle during motor imagery. We measured the vividness of motor imagery and resting-state electroencephalography before and after the task. Both groups displayed a significant increase in the vividness of motor imagery. The motor imagery and repetitive peripheral magnetic stimulation group exhibited increased β activity in the anterior cingulate cortex by source localization for electroencephalography. Hence, combined motor imagery and repetitive peripheral magnetic stimulation changes the resting-state electroencephalography activity and may promote motor imagery
    corecore