2 research outputs found
“Sidewalk” as a Realm of Users’ Interactions: simulating pedestrians’ densities at a commercial street in Cairo City
During the last four decades, researchers have developed many tools in order to investigate pedestrians’ behavior at sidewalks. Those tools tried to study sidewalks by investigating two main components: built environment and pedestrians’ movement. This paper presents a simulation for the pedestrians’ movement at a commercial street in Cairo, using an agent-based model. The model was designed in a way by which we could examine: pedestrians’ densities, the influence of types of uses on densities, the influence of flow-generators and destinations. In addition, we categorized the uses along the selected case of study by type of service and time spent by customer.
The method which we utilized for this work could be divided into two main phases: The first phase, included site video-based survey at different times and days, by which we could calculate flow rates at each generator point, and test the influence of uses on the density along the sidewalk. The second phase was to develop the model. In parallel, we focused on the uses’ types and how it affects controls pedestrians’ densities. Our results referred to a strong relation between use’s type and densities’ distribution along the street
Modelling and Simulation of Urban Mobile Agents for Analyzing Mixed Flows in Urban Pedestrian Space
Since the 1990s, complex systems research has been developing agent simulations to explain the phenomena observed in urban spaces. In recent years, agent-based modelling has often been employed to successfully simulate pedestrian behaviour. In such studies, explanations using pedestrian counter flow phases have appeared sporadically. Most state-of-the-art models, however, do not generally consider mobile agents other than pedestrians or counter flows in at least two directions. In this paper, we consider agents such as pedestrians, vehicles, wheelchairs, bicycles and so on in urban pedestrian space (UPS), which we call urban mobile agents (UMAs). The aim of this research is to develop a simulation platform to support urban simulation research. The models of rule-based UMAs that we have been developing are used to analyze the micro-meso behaviours of the mixed flows in UPS. The content of this class of agent includes the pedestrian agent as per the simplified agent simulation of pedestrian flow (sASPF) rules as well as the vehicle agent and bicycle agent in the UPS, including a wheelchair agent in the coming research. Using these models, we explore the following approaches: (a) theoretical analyses of phase transitions such as laminar flow formation or blockade of pedestrian counter flows, with clarification of the relationship between the degree of pedestrian global density and the bias of the diagonal stepping probability, which is the right or left selection probability of avoidance behaviour; (b) the implementation of obstacle avoidance rules in the sASPF pedestrian agent model, and their comparison with published evacuation experiment results, so as to evaluate the performance of the obstacle avoidance function; (c) the development of a vehicle agent model to simulate pedestrian-vehicle mixed flow at a crossroads assuming a disaster scenario; (d) the development of a bicycle agent model by extending sASPF rules; and (e) consideration of a conceptual framework for interaction fields representing heterogeneous agent mixed flows, including vehicle, bicycle, pedestrian and wheelchair agents