2 research outputs found

    Two-way traffic flow: exactly solvable model of traffic jam

    Full text link
    We study completely asymmetric 2-channel exclusion processes in 1 dimension. It describes a two-way traffic flow with cars moving in opposite directions. The interchannel interaction makes cars slow down in the vicinity of approaching cars in other lane. Particularly, we consider in detail the system with a finite density of cars on one lane and a single car on the other one. When the interchannel interaction reaches a critical value, traffic jam occurs, which turns out to be of first order phase transition. We derive exact expressions for the average velocities, the current, the density profile and the kk- point density correlation functions. We also obtain the exact probability of two cars in one lane being distance RR apart, provided there is a finite density of cars on the other lane, and show the two cars form a weakly bound state in the jammed phase.Comment: 17 pages, Latex, ioplppt.sty, 11 ps figure

    Phase diagram of congested traffic flow: an empirical study

    Full text link
    We analyze traffic data from a highway section containing one effective on-ramp. Based on two criteria, local velocity variation patterns and expansion (or nonexpansion) of congested regions, three distinct congested traffic states are identified. These states appear at different levels of the upstream flux and the on-ramp flux, thereby generating a phase diagram of the congested traffic flow. Compared to our earliear reports (including cond-mat/9905292) based on 14 day traffic data, the present paper uses a much larger data set (107 days) and the analysis is carried in a more systematic way, which leads to the modification of a part of interpretation in the earlier reports. Observed traffic states are compared with recent theoretical analyses and both agreeing and disagreeing features are found.Comment: More extensive and systematic version of earlier reports (including cond-mat/9905292). A part of interpretation in earlier reports is modified. 6 two-column pages. To appear in Phys. Rev. E (tentatively scheduled for Oct. 1 issue