58 research outputs found
Data-driven modeling of the olfactory neural codes and their dynamics in the insect antennal lobe
Recordings from neurons in the insects' olfactory primary processing center,
the antennal lobe (AL), reveal that the AL is able to process the input from
chemical receptors into distinct neural activity patterns, called olfactory
neural codes. These exciting results show the importance of neural codes and
their relation to perception. The next challenge is to \emph{model the
dynamics} of neural codes. In our study, we perform multichannel recordings
from the projection neurons in the AL driven by different odorants. We then
derive a neural network from the electrophysiological data. The network
consists of lateral-inhibitory neurons and excitatory neurons, and is capable
of producing unique olfactory neural codes for the tested odorants.
Specifically, we (i) design a projection, an odor space, for the neural
recording from the AL, which discriminates between distinct odorants
trajectories (ii) characterize scent recognition, i.e., decision-making based
on olfactory signals and (iii) infer the wiring of the neural circuit, the
connectome of the AL. We show that the constructed model is consistent with
biological observations, such as contrast enhancement and robustness to noise.
The study answers a key biological question in identifying how lateral
inhibitory neurons can be wired to excitatory neurons to permit robust activity
patterns
- …